5 research outputs found

    Acute exposition to Roundup Transorb® induces systemic oxidative stress and alterations in the expression of newly sequenced genes in silverside fish (Odontesthes humensis)

    Get PDF
    Roundup Transorb® (RDT) is a glyphosate-based herbicide commonly used in agricultural practices worldwide. This herbicide exerts negative effects on the aquatic ecosystem and affects bioenergetic and detoxification pathways, oxidative stress, and cell damage in marine organisms. These effects might also occur at the transcriptional level; however, the expression of genes associated with oxidative stress has not been studied well. Odontesthes humensis is a native Brazilian aquatic species naturally distributed in the habitats affected by pesticides, including Roundup Transorb® (RDT). This study evaluated the toxic effects of short-term exposure to RDT on O. humensis. Moreover, the genes related to oxidative stress were sequenced and characterized, and their expressions in the gills, hepatopancreas, kidneys, and brain of the fish were quantified by quantitative reverse transcription-polymerase chain reaction. The animals were exposed to two environmentally relevant concentrations of RDT (2.07 and 3.68 mg L−1) for 24 h. Lipid peroxidation, reactive oxygen species (ROS), DNA damage, and apoptosis in erythrocytes were quantified by flow cytometry. The expression of the target genes was modulated in most tissues in the presence of the highest tested concentration of RDT. In erythrocytes, the levels of lipid peroxidation, ROS, and DNA damage were increased in the presence of both the concentrations of RDT, whereas cell apoptosis was increased in the group exposed to 3.68 mg L−1 RDT. In conclusion, acute exposure to RDT caused oxidative stress in the fish, induced negative effects on cells, and modulated the expression of genes related to the enzymatic antioxidant system in O. humensis.Fil: Martins, Amanda Weege S.. Universidade Federal de Pelotas; BrasilFil: Silveira, Tony L. R.. Universidade Federal de Pelotas; Brasil. Universidade Federal do Rio Grande; BrasilFil: Remião, Mariana H.. Universidade Federal de Pelotas; BrasilFil: Domingues, William Borges. Universidade Federal de Pelotas; BrasilFil: Dellagostin, Eduardo N.. Universidade Federal de Pelotas; BrasilFil: Varela Junior, Antônio Sergio. Universidade Federal do Rio Grande; Brasil. Universidade Federal de Pelotas; BrasilFil: Corcini, Carine D.. Universidade Federal de Pelotas; BrasilFil: Costa, Patrícia G.. Universidade Federal do Rio Grande; BrasilFil: Bianchini, Adalto. Universidade Federal do Rio Grande; BrasilFil: Somoza, Gustavo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Robaldo, Ricardo B.. Universidade Federal de Pelotas; BrasilFil: Campos, Vinicius Farias. Universidade Federal de Pelotas; Brasi

    Patentometric analysis of the technological development of biotechnology for health in higher education institutions in Rio Grande do Sul

    No full text
    Abstract Biotechnology offers solutions and opportunities to meet various societal demands, thereby contributing to significant scientific advancements. This study aimed to characterize the technological development of biotechnology in the healthcare sector in the state of Rio Grande do Sul, Brazil, from 2016 to 2022 by analyzing patents filed by and granted to public and private Higher Education institutions. For data collection, a quantitative exploratory approach was employed using statistical methods and a patent analysis of institutions in the patent database of the Brazilian National Institute of Industrial Property (INPI), focusing on patents related to the healthcare field. Data were collected in October, November, and December. A total of 580 patent records were collected from the INPI, belonging to Sections A and C of the International Patent Classification (IPC) related to educational institutions. Furthermore, this study highlighted that higher education institutions have a higher number of patents in the healthcare field. These results provide an understanding of the strategic areas for technological development in biotechnology in Rio Grande do Sul, Brazil
    corecore