121 research outputs found

    An adaptive hybrid control architecture for an active transfemoral prosthesis

    Get PDF
    The daily usage of a prosthesis for people with an amputation consists of phases of intermittentand continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architectureto control a transfemoral prosthesis, where separate algorithms are used depending on these two differenttypes of movement. For intermittent walking, an interpolation-based algorithm generates control signals forthe ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing anadaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controllerto another is also presented in the design of the architecture. The individual algorithms for the generation ofthe joints angles’ references, along with the switching strategy were experimentally validated on a pilottest with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. Theresults demonstrate the capability of the individual algorithms to generate the required control signals whileundergoing smooth transitions when required. Through the use of a combination of interpolation and adaptivefrequency oscillator-based methods, the controller also demonstrates its response adaptation capability tovarious walking speeds

    Toward Controlling Transtibial Prostheses Using a Single Degree of Freedom Inertial Sensor System

    Get PDF
    Control strategies for lower limb prostheses have made multiple significant advancements over the years. In this work, we investigate the scope and capabilities of a controller for ankle-foot prostheses that relies only on a one-degree-of-freedom inertial sensor, supplemented with a control algorithm that can perform a real time update of actuation parameters using gait information available from past gait cycles. The updated actuation parameters are applied to the subsequent gait cycle and the cycle repeats itself. The idea behind this controller is to allow a user to have infinite possible variations in gait speeds (within the allowable limits of actuation) while keeping the required sensory inputs to a minimum. As a consequence of this controller design, the user is not forced to choose discrete speeds of walking (slow, medium, fast) and is capable of freely varying his gait speeds on each step, while utilizing only a single-degree-of-freedom sensor. We implement the controller on an actuated transtibial prosthesis prototype based on a series-elastic spring configuration, and conduct tests for level ground walking at a self-selected walking speed, to explore the achievable range of response pertaining to daily living tasks. The pilot tests on a healthy participant, conducting level ground walking with turns and remotely controlling the prosthesis, suggest that it is possible to control a transtibial prosthesis using a simple uni-sensor framework, with a maximum angular deviation of 5°, and maximum deviation in angular velocity of 20^{circ} /s compared to that of healthy humans.</p

    An adaptive hybrid control architecture for an active transfemoral prosthesis

    Get PDF
    The daily usage of a prosthesis for people with an amputation consists of phases of intermittent and continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architecture to control a transfemoral prosthesis, where separate algorithms are used depending on these two different types of movement. For intermittent walking, an interpolation-based algorithm generates control signals for the ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing an adaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controller to another is also presented in the design of the architecture. The individual algorithms for the generation of the joints angles’ references, along with the switching strategy were experimentally validated on a pilot test with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. The results demonstrate the capability of the individual algorithms to generate the required control signals while undergoing smooth transitions when required. Through the use of a combination of interpolation and adaptive frequency oscillator-based methods, the controller also demonstrates its response adaptation capability to various walking speeds

    Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images

    Get PDF
    Purpose Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. Methods In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (ϕ0.55mm ϕ0.55mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Results Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86±1.14 2.86±1.14, 1.11±0.14 1.11±0.14 and 1.94 0.63mm 1.94±0.63mm for case 1, case 2 and case 3, respectively. Conclusions The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future

    A combined musculoskeletal and finite element model of a foot to predict plantar pressure distribution

    Get PDF
    In this study, a combined subject-specific numerical and experimental investigation was conducted to explore the plantar pressure of an individual. The research utilized finite element (FE) and musculoskeletal modelling based on computed tomography (CT) images of an ankle-foot complex and three-dimensional gait measurements. Muscle forces were estimated using an individualized multi-body musculoskeletal model in five gait phases. The results of the FE model and gait measurements for the same subject revealed the highest stress concentration of 0.48 MPa in the forefoot, which aligns with previously-reported clinical observations. Additionally, the study found that the encapsulated soft tissue FE model with hyper-elastic properties exhibited higher stresses compared to the model with linear-elastic properties, with maximum ratios of 1.16 and 1.88 MPa in the contact pressure and von-Mises stress, respectively. Furthermore, the numerical simulation demonstrated that the use of an individualized insole caused a reduction of 8.3% in the maximum contact plantar pressure and 14.7% in the maximum von-Mises stress in the encapsulated soft tissue. Overall, the developed model in this investigation holds potential for facilitating further studies on foot pathologies and the improvement of rehabilitation techniques in clinical settings.</p

    A completely intramedullary leg lengthening device

    Get PDF
    The procedure and the external fixator for lengthening long bones was developed by G.A. Ilizarov in the late 1960's. This technique has, despite its proven abilities for leg lengthening and correction of angular deformities, some considerable disadvantages for patients. Discomfort, infections and restricted weight bearing are some reasons for the development of a completely intramedullary device for leg lengthening. The device developed is a telescopic intramedullary nail with a maximum diameter of 13 mm, which can be lengthened with 0.5 mm steps induced by a shape memory alloy actuator. The electrical energy for the actuator is supplied from outside the body by inductive coupling of two solenoid coils. Internally, the electrical energy is transformed to thermal energy by thermofoils and Peltier-element

    Planar And Spatial Gravity Balancing With Normal Springs

    Get PDF
    Very often, spring-to-gravity-balancing mechanisms are conceived with ideal (zero-free-length l0 =0) springs. However, the use of ideal springs in the conception phase tends to lead to more complex mechanisms because the ideal spring functionality has to be approximated with normal springs. To facilitate construction of (gravity) balancers, employing normal springs (l0 ≠0) directly mounted between the link attachment points of the mechanism in the conception phase therefore seems beneficiary. This paper discusses spring mechanisms that enable perfect balancing of gravity acting on an inverted pendulum while employing normal springs between the spring-attachment points: The design synthesis of such mechanisms will be explained and balancing conditions will be derived, using a potential energy consideration

    Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation

    Get PDF
    This paper introduces a newly developed gait rehabilitation device. The device, called LOPES, combines a freely translatable and 2-D-actuated pelvis segment with a leg exoskeleton containing three actuated rotational joints: two at the hip and one at the knee. The joints are impedance controlled to allow bidirectional mechanical interaction between the robot and the training subject. Evaluation measurements show that the device allows both a "pa- tient-in-charge" and "robot-in-charge" mode, in which the robot is controlled either to follow or to guide a patient, respectively. Electromyography (EMG) measurements (one subject) on eight important leg muscles, show that free walking in the device strongly resembles free treadmill walking; an indication that the device can offer task-specific gait training. The possibilities and limitations to using the device as gait measurement tool are also shown at the moment position measurements are not accurate enough for inverse-dynamical gait analysis

    Conceptual Design of a Fully Passive Transfemoral Prosthesis to Facilitate Energy-Efficient Gait

    Get PDF
    In this study, we present the working principle and conceptual design towards the realization of a fully-passive transfemoral prosthesis that mimics the energetics of the natural human gait. The fundamental property of the conceptual design consists of realizing an energetic coupling between the knee and ankle joints of the mechanism. Simulation results show that the power flow of the working principle is comparable to that in human gait and a considerable amount of energy is delivered to the ankle joint for the push-off generation. An initial prototype in half scale is realized to validate the working principle. The construction of the prototype is explained together with the test setup that has been built for the evaluation. Finally, experimental results of the prosthesis prototype during walking on a treadmill show the validity of the working principle

    Technical validation of a body-weight controlled clutch for ankle-foot orthoses of children with cerebral palsy

    Get PDF
    [Abstract] Ankle-foot orthoses (AFOs) greatly improve gait in patients with Cerebral Palsy (CP). Some AFO designs allow for passive push-off support, however, these often limit the ankle’s ROM during the swing phase of gait. This contribution presents the technical validation of a body-weight controlled clutch (BWC) designed for children with CP, to passively engage and disengage the push-off support without restricting ankle kinematics. We determined the friction coefficient (μ) of different BWC prototypes, and used it as an indicator for the amount off force that can be exerted on the mechanism before slippage occurs. Four clutch configurations were tested, containing a rigid or flexible spacer and a nylon strapping webbing or neoprene rubber slider. The best tested configuration was the one composed by the rigid spacer–nylon slider combination, which yielded a μ as high as 0.98. We envision that a lightweight solution like the BWC presented here can benefit new AFO designs to support push-off on children with gait deficiencies.Royal Netherlands Academy of Arts & Sciences; KNAWWF/1327/TMB202101Dutch Research Council; 1807
    corecore