3,871 research outputs found

    Influence of reheating on the trispectrum and its scale dependence

    Get PDF
    We study the evolution of the non-linear curvature perturbation during perturbative reheating, and hence how observables evolve to their final values which we may compare against observations. Our study includes the evolution of the two trispectrum parameters, \gnl and \taunl, as well as the scale dependence of both \fnl and \taunl. In general the evolution is significant and must be taken into account, which means that models of multifield inflation cannot be compared to observations without specifying how the subsequent reheating takes place. If the trispectrum is large at the end of inflation, it normally remains large at the end of reheating. In the classes of models we study, it is very hard to generate \taunl\gg\fnl^2, regardless of the decay rates of the fields. Similarly, for the classes of models in which \gnl\simeq\taunl during slow--roll inflation, we find the relation typically remains valid during reheating. Therefore it is possible to observationally test such classes of models without specifying the parameters of reheating, even though the individual observables are sensitive to the details of reheating. It is hard to generate an observably large \gnl however. The runnings, \nfnl and \ntaunl, tend to satisfy a consistency relation \ntaunl=(3/2)\nfnl, but are in general too small to be observed for the class of models considered regardless of reheating timescale

    Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury.

    Get PDF
    A principal objective of spinal cord injury (SCI) research is the restoration of axonal connectivity to denervated targets. We tested the hypothesis that chemotropic mechanisms would guide regenerating spinal cord axons to appropriate brainstem targets. We subjected rats to cervical level 1 (C1) lesions and combinatorial treatments to elicit axonal bridging into and beyond lesion sites. Lentiviral vectors expressing neurotrophin-3 (NT-3) were then injected into an appropriate brainstem target, the nucleus gracilis, and an inappropriate target, the reticular formation. NT-3 expression in the correct target led to reinnervation of the nucleus gracilis in a dose-related fashion, whereas NT-3 expression in the reticular formation led to mistargeting of regenerating axons. Axons regenerating into the nucleus gracilis formed axodendritic synapses containing rounded vesicles, reflective of pre-injury synaptic architecture. Thus, we report for the first time, to the best of our knowledge, the reinnervation of brainstem targets after SCI and an essential role for chemotropic axon guidance in target selection

    Correspondence between Loop-inspired and Braneworld Cosmology

    Full text link
    Braneworld scenarios are motivated by string/M-theory and can be characterized by the way in which they modify the conventional Friedmann equations of Einstein gravity. An alternative approach to quantum gravity, however, is the loop quantum cosmology program. In the semi-classical limit, the cosmic dynamics in this scenario can also be described by a set of modified Friedmann equations. We demonstrate that a dynamical correspondence can be established between these two paradigms at the level of the effective field equations. This allows qualitatively similar features between the two approaches to be compared and contrasted as well as providing a framework for viewing braneworld scenarios in terms of constrained Hamiltonian systems. As concrete examples of this correspondence, we illustrate the relationships between different cosmological backgrounds representing scaling solutions

    Some stationary properties of a QQ-ball in arbitrary space dimensions

    Get PDF
    Introducing new physically motivated ans\"{a}tze, we explore both analytically and numerically the classical and absolute stabilities of a single QQ-ball in an arbitrary number of spatial dimensions DD, working in both the thin and thick wall limits.Comment: 35 pages, 32 figures; added references, corrected typo

    What is needed of a tachyon if it is to be the dark energy?

    Full text link
    We study a dark energy scenario in the presence of a tachyon field ϕ\phi with potential V(ϕ)V(\phi) and a barotropic perfect fluid. The cosmological dynamics crucially depends on the asymptotic behavior of the quantity λ=MpVϕ/V3/2\lambda=-M_pV_\phi/V^{3/2}. If λ\lambda is a constant, which corresponds to an inverse square potential V(ϕ)ϕ2V(\phi) \propto \phi^{-2}, there exists one stable critical point that gives an acceleration of the universe at late times. When λ0\lambda \to 0 asymptotically, we can have a viable dark energy scenario in which the system approaches an ``instantaneous'' critical point that dynamically changes with λ\lambda. If λ|\lambda| approaches infinity asymptotically, the universe does not exhibit an acceleration at late times. In this case, however, we find an interesting possibility that a transient acceleration occurs in a regime where λ|\lambda| is smaller than of order unity.Comment: 11 pages and 3 figures, minor clarifications added; final version to appear in PR

    A High Angular Resolution Survey of Massive Stars in Cygnus OB2: Results from the Hubble Space Telescope Fine Guidance Sensors

    Get PDF
    We present results of a high angular resolution survey of massive OB stars in the Cygnus OB2 association that we conducted with the Fine Guidance Sensor 1R (FGS1r) on the Hubble Space Telescope. FGS1r is able to resolve binary systems with a magnitude difference delta-V < 4 down to separations as small as 0.01 arcsec. The sample includes 58 of the brighter members of Cyg OB2, one of the closest examples of an environment containing a large number of very young and massive stars. We resolved binary companions for 12 targets and confirmed the triple nature of one other target, and we offer evidence of marginally resolved companions for two additional stars. We confirm the binary nature of 11 of these systems from complementary adaptive optics imaging observations. The overall binary frequency in our study is 22% to 26% corresponding to orbital periods ranging from 20 - 20,000 years. When combined with the known short-period spectroscopic binaries, the results supports the hypothesis that the binary fraction among massive stars is > 60%. One of the new discoveries is a companion to the hypergiant star MT 304 = Cyg OB2-12, and future measurements of orbital motion should provide mass estimates for this very luminous star.Comment: accepted for AJ, 84 pages, 61 figure
    corecore