186 research outputs found
Recommended from our members
Dosing Oncology Therapeutics in Combination Therapy for Renal Dysfunction: The University of California San Diego Study of Personalized Cancer Therapy to Determine Response and Toxicity (UCSD-PREDICT) Experience.
Introduction Dose reductions are often required to avoid toxicity in combination therapy for advanced cancers, but information on appropriate dose reductions in renal dysfunction is lacking. This study assessed dose reductions of renally cleared oncology agents given in combination therapy in the setting of renal dysfunction. Methods A database of 1,072 patients was screened to identify patients with renal dysfunction (glomerular filtration rate < 60 mL/min) receiving oncology combination therapy with at least one agent requiring dose reduction for renal insufficiency. The dose of the renal agent was compared to the single-agent renal dosing recommendations to calculate a dose percentage. Tolerability was determined from electronic medical records review. Results Thirty-three regimens (n = 25 patients) were identified: 11 included at least one targeted agent (n = 8 patients) and 22 had only cytotoxic chemotherapy (n = 18 patients). The renal agent was given at the recommended single-agent renal dose in ~50% of combinations; ~50% of all regimens were tolerated, and only six combinations had dose reductions for toxicity. The median final dose percentage was 100% of the recommended renal dose (range: 25% - 333%); no significant differences were seen between groups (cytotoxic - tolerated, cytotoxic - not tolerated, targeted - tolerated, targeted - not tolerated; p = 0.38). No significant differences were observed between tolerated vs. non-tolerated (p = 0.97) or targeted vs. cytotoxic (p = 0.80) regimens. Conclusions Dose reductions of renally cleared agents are highly variable in oncology patients with renal dysfunction. Additional studies are needed to determine appropriate dosing adjustments in this population
Sertraline Pharmacokinetics in HIV-Infected and Uninfected Children, Adolescents, and Young Adults
Objective: Due to potential disease and drug interactions, the appropriate sertraline starting dose and titration range may require adjustment in pediatric patients living with HIV. This is the first report of sertraline pharmacokinetics in HIV-infected youth.Methods: IMPAACT P1080 was a multicenter pilot study describing psychiatric medication pharmacokinetics in HIV-infected and uninfected youth. Participants were stable on sertraline, >6 to <25 years old, and (1) HIV-uninfected (HIV(–)), (2) HIV-infected taking efavirenz (EFV), or (3) HIV-infected taking boosting ritonavir/protease inhibitor (PI/r). Sampling occurred at pre-dose, 2, 4, 6, 12, and 24-h post-dose. Analyses were performed for sertraline and N-desmethylsertraline, and CYP2D6 phenotyping was completed with dextromethorphan.Results: Thirty-one participants (16 HIV(-), 12 PI/r, and 3 EFV) had median (range) weight, age, and dose of 69.5 (31.5–118.2) kg, 21.8 (9.1–24.7) years, and 75.0 (12.5–150.0) mg once daily. Sertraline exposure was highest for HIV(–) and lowest for EFV cohorts; median dose-normalized AUC0−24 was 1176 (HIV(–)), 791 (PI/r) and 473 (EFV) ng*hr/mL, and C24 was 32.7 (HIV(–)), 20.1 (PI/r), and 12.8 (EFV) ng/mL. The urinary dextromethorphan/dextrorphan (DXM/DXO) ratio was higher in HIV(–) vs. PI/r cohorts (p = 0.01). Four HIV(–) participants were CYP2D6 poor metabolizers (ln(DXM/DXO) of >-0.5).Conclusions: HIV(–) cohort had the highest sertraline exposure. Sertraline exposure was ~40% lower in the PI/r cohort than in HIV(–); the need to alter sertraline dose ranges for PI/r participants is not clear. The impact of efavirenz on sertraline needs further investigation due to limited numbers of EFV participants
Population Pharmacokinetics and Exploratory Pharmacodynamics of Lorazepam in Pediatric Status Epilepticus
Background Lorazepam is one of the preferred agents used for intravenous treatment of status epilepticus (SE). We combined data from two pediatric clinical trials to characterize the population pharmacokinetics of intravenous lorazepam in infants and children aged 3 months to 17 years with active SE or a history of SE. Methods We developed a population pharmacokinetic model for lorazepam using the NONMEM software. We then assessed exploratory exposure–response relationships using the overall efficacy and safety study endpoints, and performed dosing simulations. Results A total of 145 patients contributed 439 pharmacokinetic samples. The median (range) age and dose were 5.4 years (0.3–17.8) and 0.10 mg/kg (0.02–0.18), respectively. A two-compartment pharmacokinetic model with allometric scaling described the data well. In addition to total body weight (WT), younger age was associated with slightly higher weight-normalized clearance (CL). The following relationships characterized the typical values for the central compartment volume (V1), CL, peripheral compartment volume (V2), and intercompartmental CL (Q), using individual subject WT (kg) and age (years): V1 (L) = 0.879*WT; CL (L/h) = 0.115*(Age/4.7)0.133*WT0.75; V2 (L) = 0.542*V1; Q (L/h) = 1.45*WT0.75. No pharmacokinetic parameters were associated with clinical outcomes. Simulations suggest uniform pediatric dosing (0.1 mg/kg, to a maximum of 4 mg) can be used to achieve concentrations of 50–100 ng/mL in children with SE, which have been previously associated with effective seizure control. Conclusions The population pharmacokinetics of lorazepam were successfully described using a sparse sampling approach and a two-compartment model in pediatric patients with active SE
Population pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant women with malaria
<p>Abstract</p> <p>Background</p> <p>The World Health Organization endorses the use of artemisinin-based combination therapy for treatment of acute uncomplicated falciparum malaria in the second and third trimesters of pregnancy. However, the effects of pregnancy on the pharmacokinetics of artemisinin derivatives, such as artesunate (AS), are poorly understood. In this analysis, the population pharmacokinetics of oral AS, and its active metabolite dihydroartemisinin (DHA), were studied in pregnant and non-pregnant women at the Kingasani Maternity Clinic in the DRC.</p> <p>Methods</p> <p>Data were obtained from 26 pregnant women in the second (22 - 26 weeks) or the third (32 - 36 weeks) trimester of pregnancy and from 25 non-pregnant female controls. All subjects received 200 mg AS. Plasma AS and DHA were measured using a validated LC-MS method. Estimates for pharmacokinetic and variability parameters were obtained through nonlinear mixed effects modelling.</p> <p>Results</p> <p>A simultaneous parent-metabolite model was developed consisting of mixed zero-order, lagged first-order absorption of AS, a one-compartment model for AS, and a one-compartment model for DHA. Complete conversion of AS to DHA was assumed. The model displayed satisfactory goodness-of-fit, stability, and predictive ability. Apparent clearance (CL/F) and volume of distribution (V/F) estimates, with 95% bootstrap confidence intervals, were as follows: 195 L (139-285 L) for AS V/F, 895 L/h (788-1045 L/h) for AS CL/F, 91.4 L (78.5-109 L) for DHA V/F, and 64.0 L/h (55.1-75.2 L/h) for DHA CL/F. The effect of pregnancy on DHA CL/F was determined to be significant, with a pregnancy-associated increase in DHA CL/F of 42.3% (19.7 - 72.3%).</p> <p>Conclusions</p> <p>In this analysis, pharmacokinetic modelling suggests that pregnant women have accelerated DHA clearance compared to non-pregnant women receiving orally administered AS. These findings, in conjunction with a previous non-compartmental analysis of the modelled data, provide further evidence that higher AS doses would be required to maintain similar DHA levels in pregnant women as achieved in non-pregnant controls.</p
Predictive Performance of a Gentamicin Population Pharmacokinetic Model in Neonates Receiving Full-Body Hypothermia
Population pharmacokinetic (popPK) models derived from small PK studies in neonates are often underpowered to detect clinically important characteristics that drive dosing. External validation of such models is crucial. In this study, the predictive performance of a gentamicin popPK model in neonates receiving hypothermia was evaluated
Fluconazole Population Pharmacokinetics and Dosing for Prevention and Treatment of Invasive Candidiasis in Children Supported with Extracorporeal Membrane Oxygenation
ABSTRACT Candida infections are a leading cause of infectious disease-related death in children supported by extracorporeal membrane oxygenation (ECMO). The ECMO circuit can alter drug pharmacokinetics (PK); thus, standard fluconazole dosing may result in suboptimal drug exposures. The objective of our study was to determine the PK of fluconazole in children on ECMO. Forty children with 367 PK samples were included in the analysis. The PK data were analyzed using nonlinear mixed-effect modeling (NONMEM). A one-compartment model best described the data. Weight was included in the base model for clearance (CL) and volume of distribution ( V ). The final model included the effect of serum creatinine (SCR) level on CL and the effect of ECMO on V as follows: CL (in liters per hour) = 0.019 × weight × (SCR/0.4) −0.29 × exp(η CL ) and V (in liters) = 0.93 × weight × 1.4 ECMO × exp(η V ). The fluconazole V was increased in children supported by ECMO. Consequently, children on ECMO require a higher fluconazole loading dose for prophylaxis (12 mg/kg of body weight) and treatment (35 mg/kg) paired with standard maintenance doses to achieve exposures similar to those of children not on ECMO
Vancomycin Cerebrospinal Fluid Pharmacokinetics in Children with Cerebral Ventricular Shunt Infections
This study described the cerebrospinal fluid (CSF) exposure of vancomycin in 8 children prescribed intravenous vancomycin therapy for cerebral ventricular shunt infection. Vancomycin CSF concentrations ranged from 0.06 to 9.13 mg/L and the CSF: plasma ratio ranged from 0 to 0.66. Two children out of three with a staphylococcal CSF infection had CSF concentrations > minimal inhibitory concentration at the end of the dosing interval
From pediatric covariate model to semiphysiological function for maturation: Part I-extrapolation of a covariate model from morphine to zidovudine
New approaches to expedite the development of safe and effective pediatric dosing regimens and first-in-child doses are urgently needed. Model-based approaches require quantitative functions on the maturation of different metabolic pathways. In this study, we directly incorporated a pediatric covariate model for the glucuronidation of morphine into a pediatric population model for zidovudine glucuronidation. This model was compared with a reference model that gave the statistically best description of the data. Both models had adequate goodness-of-fit plots and normalized prediction distribution errors (NPDE), similar population clearance values for each individual, and a Δobjective function value of 13 points (Δ2df). This supports our hypothesis that pediatric pharmacokinetic covariate models contain system-specific information that can be used as semiphysiological functions in pediatric population models. Further research should explore the validity of the semiphysiological function for other UDP-glucuronosyltransferase 2B7 substrates and patient populations and reveal how this function can be used for pediatric physiologically based pharmacokinetic models
- …