3,832 research outputs found

    Angular-planar CMB power spectrum

    Full text link
    Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum ClC_l, this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual ClC_l's. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l=7l=7 and l=8l=8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.Comment: Replaced to match the published version. Journal-ref: Phys.Rev. D80 063525 (2009

    Fluvio-deltaic avulsions during relative sea-level fall.

    Get PDF
    Understanding river response to changes in relative sea level (RSL) is essential for predicting fluvial stratigraphy and source-to-sink dynamics. Recent theoretical work has suggested that rivers can remain aggradational during RSL fall, but field data are needed to verify this response and investigate sediment deposition processes. We show with field work and modeling that fluvio-deltaic systems can remain aggradational or at grade during RSL fall, leading to superelevation and continuation of delta lobe avulsions. The field site is the Goose River, Newfoundland-Labrador, Canada, which has experienced steady RSL fall of around 3–4 mm yr⁻¹ in the past 5 k.y. from post-glacial isostatic rebound. Elevation analysis and optically stimulated luminescence dating suggest that the Goose River avulsed and deposited three delta lobes during RSL fall. Simulation results from Delft3D software show that if the characteristic fluvial response time is longer than the duration of RSL fall, then fluvial systems remain aggradational or at grade, and continue to avulse during RSL fall due to superelevation. Intriguingly, we find that avulsions become more frequent at faster rates of RSL fall, provided the system response time remains longer than the duration of RSL fall. This work suggests that RSL fall rate may influence the architecture of falling-stage or forced regression deposits by controlling the number of deposited delta lobes

    Nuclear Corrections to Hyperfine Structure in Light Hydrogenic Atoms

    Full text link
    Hyperfine intervals in light hydrogenic atoms and ions are among the most accurately measured quantities in physics. The theory of QED corrections has recently advanced to the point that uncalculated terms for hydrogenic atoms and ions are probably smaller than 0.1 parts per million (ppm), and the experiments are even more accurate. The difference of the experiments and QED theory is interpreted as the effect on the hyperfine interaction of the (finite) nuclear charge and magnetization distributions, and this difference varies from tens to hundreds of ppm. We have calculated the dominant component of the 1s hyperfine interval for deuterium, tritium and singly ionized helium, using modern second-generation potentials to compute the nuclear component of the hyperfine splitting for the deuteron and the trinucleon systems. The calculated nuclear corrections are within 3% of the experimental values for deuterium and tritium, but are about 20% discrepant for singly ionized helium. The nuclear corrections for the trinucleon systems can be qualitatively understood by invoking SU(4) symmetry.Comment: 26 pages, 1 figure, latex - submitted to Physical Review

    Rotational States of Magnetic Molecules

    Full text link
    We study a magnetic molecule that exhibits spin tunneling and is free to rotate about its anisotropy axis. Exact low-energy eigenstates of the molecule that are superpositions of spin and rotational states are obtained. We show that parameter α=2(S)2/(IΔ)\alpha = 2(\hbar S)^2/(I\Delta) determines the ground state of the molecule. Here S\hbar S is the spin, II is the moment of inertia, and Δ\Delta is the tunnel splitting. The magnetic moment of the molecule is zero at ααc\alpha \alpha_c. At α\alpha \to \infty the spin of the molecule localizes in one of the directions along the anisotropy axis.Comment: 4 pages, 3 figure

    Spin precession and alternating spin polarization in spin-3/2 hole systems

    Full text link
    The spin density matrix for spin-3/2 hole systems can be decomposed into a sequence of multipoles which has important higher-order contributions beyond the ones known for electron systems [R. Winkler, Phys. Rev. B \textbf{70}, 125301 (2004)]. We show here that the hole spin polarization and the higher-order multipoles can precess due to the spin-orbit coupling in the valence band, yet in the absence of external or effective magnetic fields. Hole spin precession is important in the context of spin relaxation and offers the possibility of new device applications. We discuss this precession in the context of recent experiments and suggest a related experimental setup in which hole spin precession gives rise to an alternating spin polarization.Comment: 4 pages, 2 figures, to appear in Physical Review Letter

    Reconstructing a Simple Polytope from its Graph

    Full text link
    Blind and Mani (1987) proved that the entire combinatorial structure (the vertex-facet incidences) of a simple convex polytope is determined by its abstract graph. Their proof is not constructive. Kalai (1988) found a short, elegant, and algorithmic proof of that result. However, his algorithm has always exponential running time. We show that the problem to reconstruct the vertex-facet incidences of a simple polytope P from its graph can be formulated as a combinatorial optimization problem that is strongly dual to the problem of finding an abstract objective function on P (i.e., a shelling order of the facets of the dual polytope of P). Thereby, we derive polynomial certificates for both the vertex-facet incidences as well as for the abstract objective functions in terms of the graph of P. The paper is a variation on joint work with Michael Joswig and Friederike Koerner (2001).Comment: 14 page

    Spin Density Matrix of Spin-3/2 Hole Systems

    Full text link
    For hole systems with an effective spin j=3/2, we present an invariant decomposition of the spin density matrix that can be interpreted as a multipole expansion. The charge density corresponds to the monopole moment and the spin polarization due to a magnetic field corresponds to a dipole moment while heavy hole-light hole splitting can be interpreted as a quadrupole moment. For quasi two-dimensional hole systems in the presence of an in-plane magnetic field B the spin polarization is a higher-order effect that is typically much smaller than one even if the minority spin subband is completely depopulated. On the other hand, the field B can induce a substantial octupole moment which is a unique feature of j=3/2 hole systems.Comment: 8 pages, 1 figure, 3 table

    Ground state of two electrons on concentric spheres

    Full text link
    We extend our analysis of two electrons on a sphere [Phys. Rev. A {\bf 79}, 062517 (2009); Phys. Rev. Lett. {\bf 103}, 123008 (2009)] to electrons on concentric spheres with different radii. The strengths and weaknesses of several electronic structure models are analyzed, ranging from the mean-field approximation (restricted and unrestricted Hartree-Fock solutions) to configuration interaction expansion, leading to near-exact wave functions and energies. The M{\o}ller-Plesset energy corrections (up to third-order) and the asymptotic expansion for the large-spheres regime are also considered. We also study the position intracules derived from approximate and exact wave functions. We find evidence for the existence of a long-range Coulomb hole in the large-spheres regime, and infer that unrestricted Hartree-Fock theory over-localizes the electrons.Comment: 10 pages, 10 figure

    Hierarchical mean-field approach to the J1J_1-J2J_2 Heisenberg model on a square lattice

    Get PDF
    We study the quantum phase diagram and excitation spectrum of the frustrated J1J_1-J2J_2 spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field approach, at the heart of which lies the idea of identifying {\it relevant} degrees of freedom, is developed. Thus, by performing educated, manifestly symmetry preserving mean-field approximations, we unveil fundamental properties of the system. We then compare various coverings of the square lattice with plaquettes, dimers and other degrees of freedom, and show that only the {\it symmetric plaquette} covering, which reproduces the original Bravais lattice, leads to the known phase diagram. The intermediate quantum paramagnetic phase is shown to be a (singlet) {\it plaquette crystal}, connected with the neighboring N\'eel phase by a continuous phase transition. We also introduce fluctuations around the hierarchical mean-field solutions, and demonstrate that in the paramagnetic phase the ground and first excited states are separated by a finite gap, which closes in the N\'eel and columnar phases. Our results suggest that the quantum phase transition between N\'eel and paramagnetic phases can be properly described within the Ginzburg-Landau-Wilson paradigm.Comment: LaTeX 2e, 14 pages, 17 figure
    corecore