13 research outputs found

    Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon

    Get PDF
    BACKGROUND Resistance to the carbamate insecticide bendiocarb is emerging in Anopheles gambiae populations from the city of Yaoundé in Cameroon. However, the molecular basis of this resistance remains uncharacterized. The present study objective is to investigate mechanisms promoting resistance to bendiocarb in An. gambiae populations from Yaoundé. METHODS The level of susceptibility of An. gambiae s.l. to bendiocarb 0.1 % was assessed from 2010 to 2013 using bioassays. Mosquitoes resistant to bendiocarb, unexposed and susceptible mosquitoes were screened for the presence of the Ace-1(R) mutation using TaqMan assays. Microarray analyses were performed to assess the pattern of genes differentially expressed between resistant, unexposed and susceptible. RESULTS Bendiocarb resistance was more prevalent in mosquitoes originating from cultivated sites compared to those from polluted and unpolluted sites. Both An. gambiae and Anopheles coluzzii were found to display resistance to bendiocarb. No G119S mutation was detected suggesting that resistance was mainly metabolic. Microarray analysis revealed the over-expression of several cytochrome P450 s genes including cyp6z3, cyp6z1, cyp12f2, cyp6m3 and cyp6p4. Gene ontology (GO) enrichment analysis supported the detoxification role of cytochrome P450 s with several GO terms associated with P450 activity significantly enriched in resistant samples. Other detoxification genes included UDP-glucosyl transferases, glutathione-S transferases and ABC transporters. CONCLUSION The study highlights the probable implication of metabolic mechanisms in bendiocarb resistance in An. gambiae populations from Yaoundé and stresses the need for further studies leading to functional validation of detoxification genes involved in this resistance

    Water Quality and Anopheles gambiae Larval Tolerance to Pyrethroids in the Cities of Douala and Yaoundé (Cameroon)

    Get PDF
    The poor management of the urban environment in sub-Saharan Africa is affecting Anopheles gambiae susceptibility to insecticides. A study was undertaken to assess the influence of breeding sites physicochemical parameters on malaria vectors population tolerance to insecticides. A total of 18, 262 larvae collected from 104 breeding sites were exposed to diagnostic concentrations of permethrin and deltamethrin. Larvae originating from cultivated sites were more tolerant than larvae from polluted or nonpolluted sites. No significant difference was observed between polluted and nonpolluted sites. Field larvae were 142 to 325 times and 6.08 to 9.57 times more tolerant to deltamethrin and permethrin, respectively, than larvae of the A. gambiae Kisumu strain used as control. A low but significant correlation was detected between physicochemical parameters and larval insecticide tolerance. Cultivated sites were negatively and significantly correlated to larval tolerance to both deltamethrin (r=−0.421; P<0.0001) and permethrin (r=−0.392; P<0.0001). Dissolved oxygen (r=+0.466; P<0.0001) and ammonia (r=−0.205; P=0.04) appeared significantly correlated to larval tolerance to deltamethrin. The data suggest a direct correlation between some characteristics from the breeding sites and larval tolerance to pyrethroids
    corecore