1,574 research outputs found

    Observation of a Free-Shercliff-Layer Instability in Cylindrical Geometry

    Full text link
    We report on observations of a free-Shercliff-layer instability in a Taylor-Couette experiment using a liquid metal over a wide range of Reynolds numbers, Re∌103−106Re\sim 10^3-10^6. The free Shercliff layer is formed by imposing a sufficiently strong axial magnetic field across a pair of differentially rotating axial endcap rings. This layer is destabilized by a hydrodynamic Kelvin-Helmholtz-type instability, characterized by velocity fluctuations in the r−ξr-\theta plane. The instability appears with an Elsasser number above unity, and saturates with an azimuthal mode number mm which increases with the Elsasser number. Measurements of the structure agree well with 2D global linear mode analyses and 3D global nonlinear simulations. These observations have implications for a range of rotating MHD systems in which similar shear layers may be produced.Comment: 5 pages, 4 figure

    Pluripolarity of Graphs of Denjoy Quasianalytic Functions of Several Variables

    Full text link
    In this paper we prove pluripolarity of graphs of Denjoy quasianalytic functions of several variables on the spanning se

    Sulphate-controlled Diversity of Subterranean Microbial Communities over Depth in Deep Groundwater with Opposing Gradients of Sulphate and Methane

    Get PDF
    The groundwater system in Olkiluoto, Finland, is stratified with a mixing layer at a depth of approximately 300m between sulphate-rich, methane-poor and sulphate-poor, methane-rich groundwaters. New sequence library data obtained by 454 pyrotag sequencing of the v4v6 16S rDNA region indicated that sulphate-reducing bacteria (SRB) dominated the mixing layer while SRB could not be detected in the deep sulphate-poor groundwater samples. With the indispensable support of the sequence data, it could be demonstrated that sulphate was the only component needed to trigger a very large community transition in deep sulphate-poor, methane-rich groundwater from a non-sulphate-reducing community comprising Hydrogenophaga, Pseudomonas, Thiobacillus, Fusibacter, and Lutibacter to a sulphate-reducing community with Desulfobacula, Desulfovibrio, Desufobulbaceae, Desulfobacterium, Desulfosporosinus, and Desulfotignum. Experiments with biofilms and planktonic microorganisms in flow cells under in situ conditions confirmed that adding sulphate to the sulphate-poor groundwater generated growth of cultivable SRB and detectable SRB-related sequences. It was also found that the 16S rDNA diversity of the biofilms was conserved over 103 d and that there was great similarity in diversity between the microorganisms in the biofilms and in the flowing groundwater. This work demonstrates that the presence/absence of only one geochemical parameter, i.e., sulphate, in the groundwater significantly influenced the diversity of the investigated subterranean microbial community

    On searches for gravitational waves from mini creation event by laser interferometric detectors

    Full text link
    As an alternative view to the standard big bang cosmology the quasi-steady state cosmology(QSSC) argues that the universe was not created in a single great explosion; it neither had a beginning nor will it ever come to an end. The creation of new matter in the universe is a regular feature occurring through finite explosive events. Each creation event is called a mini-bang or, a mini creation event(MCE). Gravitational waves are expected to be generated due to any anisotropy present in this process of creation. Mini creation event ejecting matter in two oppositely directed jets is thus a source of gravitational waves which can in principle be detected by laser interferometric detectors. In the present work we consider the gravitational waveforms propagated by linear jets and then estimate the response of laser interferometric detectors like LIGO and LISA
    • 

    corecore