4 research outputs found

    Non-universal transmission phase behaviour of a large quantum dot

    Full text link
    The electron wave function experiences a phase modification at coherent transmission through a quantum dot. This transmission phase undergoes a characteristic shift of π\pi when scanning through a Coulomb-blockade resonance. Between successive resonances either a transmission phase lapse of π\pi or a phase plateau is theoretically expected to occur depending on the parity of the corresponding quantum dot states. Despite considerable experimental effort, this transmission phase behaviour has remained elusive for a large quantum dot. Here we report on transmission phase measurements across such a large quantum dot hosting hundreds of electrons. Using an original electron two-path interferometer to scan the transmission phase along fourteen successive resonances, we observe both phase lapses and plateaus. Additionally, we demonstrate that quantum dot deformation alters the sequence of transmission phase lapses and plateaus via parity modifications of the involved quantum dot states. Our findings set a milestone towards a comprehensive understanding of the transmission phase of quantum dots.Comment: Main paper: 18 pages, 5 figures, Supplementary materials: 8 pages, 4 figure

    Sound-driven single-electron transfer in a circuit of coupled quantum rails

    Get PDF
    Abstract: Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits
    corecore