14 research outputs found

    Optimization of clonazepam therapy adjusted to patient's CYP3A-status and NAT2 genotype.

    Get PDF
    BACKGROUND: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms and adverse effects, such as drowsiness, dizziness and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and non-genetic factors. METHODS: Since the prominent role in clonazepam nitro-reduction and in acetylation of 7-amino-clonazepam is assigned to CYP3A and NAT2 enzymes, respectively, the association between the patients' CYP3A-status (CYP3A5 genotype, CYP3A4 expression) or NAT2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. RESULTS: The patients' CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and the bodyweight (1263.5+/-482.9 and 558.5+/-202.4 ng/ml per mg/kg bw in low and normal expressers, respectively, P<0.0001). Consequently, the dose-requirement for the therapeutic concentration of clonazepam was substantially lower in low CYP3A4 expresser patients than in normal expressers (0.029+/-0.011 vs 0.058+/-0.024 mg/kg bw, P<0.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slow N-acetylation than all the others. CONCLUSION: Prospective assaying of CYP3A4 expression and NAT2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen

    Isoform-Dependent Changes in Cytochrome P450-Mediated Drug Metabolism after Portal Vein Ligation in Rat

    Get PDF
    Surgical removal of complicated liver tumors may be realized in two stages via selective portal vein ligation, inducing the atrophy of portally ligated lobes and the compensatory hypertrophy of nonligated liver lobes. Unlike morphological changes, functional aspects such as hepatic cytochrome P450 (CYP)-mediated drug metabolism remain vaguely understood, despite its critical role in both drug biotransformation and hepatic functional analysis. Our goal was the multilevel characterization of hepatic CYP-mediated drug metabolism after portal vein ligation in the rat.Male Wistar rats (n = 24, 210-230 g) were analyzed either untreated (controls; n = 4) or 24/48/72/168/336 h (n = 4 each) following portal vein ligation affecting approximately 80% of the liver parenchyma. Besides the weights of ligated and nonligated lobes, pentobarbital (30 mg/kg)-induced sleeping time, CYP1A(2), CYP 2B(1/2), CYP2C(6/11/13), CYP3A(1) enzyme activities, and corresponding isoform mRNA expressions, as well as CYP3A1 protein expression were determined by in vivo sleeping test, CYP isoform-selective assays, polymerase chain reaction, and immunohistochemistry, respectively.Portal vein ligation triggered atrophy in ligated lobes and hypertrophy nonligated lobes. Sleeping time was transiently elevated (p = 0.0451). After an initial rise, CYP1A, CYP2B, and CYP3A enzyme activities dropped until 72 h, followed by a potent increase only in the nonligated lobes, paralleled by an early (24-48 h) transcriptional activation only in nonligated lobes. CYP2C enzyme activities and mRNA levels were bilaterally rapidly decreased, showing a late reconvergence only in nonligated lobes. CYP3A1 immunohistochemistry indicated substantial differences in positivity in the early period.Beyond the atrophy-hypertrophy complex, portal vein ligation generated a transient suppression of global and regional drug metabolism, re-established by an adaptive, CYP isoform-dependent transcriptional response of the nonligated lobes

    Role of Aspergilli and Penicillia in mycotoxin contamination of maize in Hungary

    Get PDF
    Aspergillus and Penicillium species and their mycotoxins, including aflatoxins, ochratoxins, fumonisins and patulin, are frequently encountered on cereal products. The occurrence of these species and their mycotoxins on maize was investigated in Hungary after harvest in two consecutive years. Surface-sterilized cereal seeds were placed on selective media, and the isolated fungal strains were identified using morphological methods. In 2010 and 2011, 81.94% and 14.33%, respectively, of the samples were found to be contaminated with potentially toxigenic isolates. The species identification of selected isolates was carried out using sequence-based methods. Several Aspergillus flavus isolates were identified, which are potential aflatoxin producers. Other mycotoxinproducing species were also isolated, including black Aspergilli, which potentially produce ochratoxins and fumonisins, and A. clavatus, which produces patulin. In 2010 a large number of Penicillium species occurred in the samples, producing a wide range of mycotoxins. The mycotoxin content of the samples was analysed using the ELISA and HPLC techniques. Aflatoxins were not detected in any of the samples, while ochratoxins and fumonisins were successfully identified in some of the maize seeds.</jats:p

    Optimization of clonazepam therapy adjusted to patient's CYP3A-status and NAT2 genotype

    Get PDF
    BACKGROUND: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms and adverse effects, such as drowsiness, dizziness and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and non-genetic factors. METHODS: Since the prominent role in clonazepam nitro-reduction and in acetylation of 7-amino-clonazepam is assigned to CYP3A and NAT2 enzymes, respectively, the association between the patients' CYP3A-status (CYP3A5 genotype, CYP3A4 expression) or NAT2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. RESULTS: The patients' CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and the bodyweight (1263.5+/-482.9 and 558.5+/-202.4 ng/ml per mg/kg bw in low and normal expressers, respectively, P<0.0001). Consequently, the dose-requirement for the therapeutic concentration of clonazepam was substantially lower in low CYP3A4 expresser patients than in normal expressers (0.029+/-0.011 vs 0.058+/-0.024 mg/kg bw, P<0.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slow N-acetylation than all the others. CONCLUSION: Prospective assaying of CYP3A4 expression and NAT2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen

    Isoform-Dependent Changes in Cytochrome P450-Mediated Drug Metabolism after Portal Vein Ligation in the Rat

    Get PDF
    Surgical removal of complicated liver tumors may be realized in two stages via selective portal vein ligation, inducing the atrophy of portally ligated lobes and the compensatory hypertrophy of nonligated liver lobes. Unlike morphological changes, functional aspects such as hepatic cytochrome P450 (CYP)-mediated drug metabolism remain vaguely understood, despite its critical role in both drug biotransformation and hepatic functional analysis. Our goal was the multilevel characterization of hepatic CYP-mediated drug metabolism after portal vein ligation in the rat.Male Wistar rats (n = 24, 210-230 g) were analyzed either untreated (controls; n = 4) or 24/48/72/168/336 h (n = 4 each) following portal vein ligation affecting approximately 80% of the liver parenchyma. Besides the weights of ligated and nonligated lobes, pentobarbital (30 mg/kg)-induced sleeping time, CYP1A(2), CYP 2B(1/2), CYP2C(6/11/13), CYP3A(1) enzyme activities, and corresponding isoform mRNA expressions, as well as CYP3A1 protein expression were determined by in vivo sleeping test, CYP isoform-selective assays, polymerase chain reaction, and immunohistochemistry, respectively.Portal vein ligation triggered atrophy in ligated lobes and hypertrophy nonligated lobes. Sleeping time was transiently elevated (p = 0.0451). After an initial rise, CYP1A, CYP2B, and CYP3A enzyme activities dropped until 72 h, followed by a potent increase only in the nonligated lobes, paralleled by an early (24-48 h) transcriptional activation only in nonligated lobes. CYP2C enzyme activities and mRNA levels were bilaterally rapidly decreased, showing a late reconvergence only in nonligated lobes. CYP3A1 immunohistochemistry indicated substantial differences in positivity in the early period.Beyond the atrophy-hypertrophy complex, portal vein ligation generated a transient suppression of global and regional drug metabolism, re-established by an adaptive, CYP isoform-dependent transcriptional response of the nonligated lobes
    corecore