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Abstract 

Background. Surgical removal of complicated liver tumors may be realized in two stages via 

selective portal vein ligation, inducing the atrophy of portally ligated and the compensatory 

hypertrophy of non-ligated liver lobes. Unlike morphological changes, functional aspects, 

such as hepatic cytochrome P450 (CYP)-mediated drug metabolism remain vaguely 

understood, despite its critical role in both drug biotransformation and hepatic functional 

analysis. Our goal was the multilevel characterization of hepatic CYP-mediated drug 

metabolism after portal vein ligation in rat.  

Methods. Male Wistar rats (n=24, 210-230g) were analyzed either untreated (‘controls’; n=4) 

or 24/48/72/168/336h (n=4 each) following portal vein ligation affecting ~80% liver 

parenchyma. Besides the weights of ligated and non-ligated lobes, pentobarbital (30 mg/kg)-

induced sleeping time, CYP1A(2), CYP2B(1/2), CYP2C(6/11/13), CYP3A(1) enzyme 

activities and corresponding isoform mRNA expressions, as well as CYP3A1 protein 

expression were determined by in vivo sleeping test, CYP isoform selective assays, 

polymerase chain reaction and immunohistochemistry, respectively. 

Results. Portal vein ligation triggered atrophy in ligated lobes and hypertrophy non-ligated 

lobes. Sleeping time was transiently elevated (P=0.0451). After an initial rise, CYP1A, 

CYP2B and CYP3A enzyme activities dropped until 72h, followed by a potent increase only 

in the non-ligated lobes; paralleled by an early (24-48h) transcriptional activation only in non-

ligated lobes. CYP2C enzyme activities and mRNA levels were bilaterally rapidly decreased, 

showing but a late reconvergence only in non-ligated lobes. CYP3A1 immunohistochemistry 

indicated substantial differences in positivity in the early period.  
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Conclusions. Beyond the atrophy-hypertrophy complex, portal vein ligation generated a 

transient suppression of global and regional drug metabolism, re-established by an adaptive, 

CYP isoform-dependent transcriptional response of the non-ligated lobes. 

Keywords: cytochrome P450, drug metabolism, liver function, portal vein ligation, rat 
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Introduction 

Liver malignancies remain a major medical problem, being the sixth most frequent tumorous 

disease worldwide as well as the second in cancer-related deaths [1]. The first-choice 

treatment is surgical resection to achieve complete tumor removal [2]; performable however 

in only 10-30% of patients, largely due to an insufficient amount of the future liver remnant 

[2,3], and an associated increase in liver failure-related morbidity and mortality [4]. For the 

treatment of patients with low future liver remnant, portal vein occlusive (PVO) strategies 

may provide an option [2]. Accordingly, surgical ligation (portal vein ligation – PVL) [5] or 

embolization of portal vein branches of the tumorous lobes (portal vein embolization) [6] 

induce the atrophy of tumor-bearing segments and a compensatory hypertrophy of the 

contralateral, (presumably) healthy liver, to ultimately enable liver resection in a second stage 

[7]. Optimal timing is crucial for the Scylla and Charybdis scenario of premature resection 

induced hepatic dysfunction and imminent tumor progression [7]. Currently, the date of 

resection is determined using CT volumetry involving the preoperative delineation of the 

future liver remnant, with consensus threshold values being 25-30% and 40-50% of the 

tumor-free total liver volume, in healthy or compromised parenchyma, respectively [2-4,7]. 

However, recent findings pointed out that liver volume may inaccurately reflect liver 

function, only to highlight the special importance of hepatic functional analysis [8,9]. Therein 

many of the vast variety of established liver function tests rely on the quantification of hepatic 

capacity to convert previously administered chemicals, which dominantly depends on the 

cytochrome P450 enzymes (CYPs) of hepatic drug metabolism [4,9]. CYPs are a superfamily 

of hemethiolate monooxygenases, located in the smooth endoplasmic reticulum of liver cells 

and many extrahepatic tissues (e.g. intestine, kidney, lung and brain) and are classified into 

families and subfamilies according to similarities in their amino acid sequence [10,11]. CYPs 

play a central role in the metabolism of a large variety of exogenous and endogenous 
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compounds, and catalyze the phase I oxidative reactions of many drugs, nutrients, 

environmental pollutants and endogenous substances (steroid hormones, prostaglandins, bile 

and fatty acids) [11], with CYP 1, 2 and 3 families responsible for the biotransformation of 

drugs [12,13]. While CYPs generally possess wide substrate specificity, their activity is 

influenced by both genetic and non-genetic factors (nutrition, co-medication, age, hormonal 

status, liver function), resulting in substantial intra- and interindividual differences in drug 

metabolism [14,15]. Beyond these, CYP expressions and activities are also influenced by 

different pathophysiological conditions, such as infection, inflammation, cancer, or even PVO 

[16,17]. Therefore, any alterations in drug metabolism are critically important during PVO 

procedures. For the core significance in liver function and functional analysis, drug 

metabolism confers key information on functional changes following PVO. Moreover, 

changes in CYP levels or activities may well result in severe derailment of chronic drug 

regimens, potentially culminating in undesired side effects or therapeutic failures [13]. 

Whereas, profiling of CYP expressions and activities may reflect on hepatic drug metabolism 

[18]. New insights could lead to not only an improved knowledge in liver function testing and 

the better itineration of resection, but also an enhanced utilization and personalization of 

perioperative drug doses. Consequently, the aim of our study was the investigation of the 

transient changes of functional alterations in CYP-mediated drug metabolism following PVL 

in an experimental rat model involving healthy liver parenchyma. 

Materials and methods 

Animals and ethics 

Experimental design was harmonized with the guidelines of the National Institutes of Health 

and the 40/2013 (II.14.) Act of the Hungarian Government about animal experiments, as well 

as actual ARRIVE Guidelines [19]. The experiment was mutually approved by local and 

institutional ethical boards (Scientific and Ethical Board of Animal Experimentation of the 
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National Department of Food-chain Safety; the Animal Welfare Ward of the Food-chain 

Safety, Plant- and Land Protection Division of the Pest County Government Office; and the 

Animal Welfare Committee of the Semmelweis University (license numbers: PE/EA/2893-

6/2016; PEI/001/313-4/2014). Male Wistar rats, aged 7 weeks, weighing 210-230 g (Central 

Animal Facility, Semmelweis University, Budapest, Hungary) were used in the experiment.  

Experimental design and surgical procedure 

Following the induction of general anesthesia [intraperitoneal (ip.) injection of 75 mg/body 

weight (bw) kilograms (kg) ketamine and 7.5 mg/bw kg xylazine in 1.5 ml saline], rats 

underwent median laparotomy and PVL affecting approximately 80% of total liver 

parenchyma (n=20), as previously described by our workgroup [20,21]. After abdominal 

saline lavage, antibiotic (10 mg/bw kg metronidazol ip.) and postoperative analgesic 

(1 mg/bw kg nalbuphine subcutaneously, repeated once 24h later) treatment and double-

layered abdominal suturing, rats were allowed to rest in their cages. Following different 

postoperative survival times of 24 hours (h)/48h/72h/168h/336h, rats (n=4 each), as well as 

another group of rats, spared the operative procedure to be used as controls (n=4), were all 

subjected to the pentobarbital sleeping test. Its finalization was followed by the repeated, 

previously described ip. anesthetic injection to allow sacrificing of the animal with right 

ventricular exsanguination for the harvest of liver samples (Figure 1). 

Pentobarbital sleeping test 

Pentobarbital induced sleeping time was measured to evaluate in vivo hepatic CYP activity 

after ip. injection of pentobarbital (30 mg/bw kg in 1 ml saline). The easing rat was placed 

lying on its back, and the start of the pentobarbital-induced sleep was defined as the moment 

when the instinctive reaction of the rat of turning to one side (referred to as the ‘righting 

reflex’) was completely lost, whereas the end was determined by the spontaneous 
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reappearance of the righting reflex, with the total sleeping interval specified as ‘sleeping time’ 

[22]. 

Liver lobe weights 

Secondary to exsanguination, the liver lobes associated with either the ligated [ligated lobes 

(LL)] or intact [(non-ligated lobes (NLL)] portal vein branches were both measured with a 

laboratory scale (Mettler Toledo AG 245, Mettler-Toledo LLC, Columbus, OH, confidence: 

0.01 mg/0.1 mg), and their individual, as well as combined wet weights (total liver weight) 

were expressed as per bw, as well as total liver weight. 

Preparation of liver microsomes and CYP enzyme activity assays 

Liver tissues from both the LL and NLL were homogenized in 0.1 M Tris-HCl buffer (pH 

7.4) containing 1 mM EDTA and 154 mM KCl (Reanal Finechemicals Co., Budapest, 

Hungary). Hepatic microsomal fractions were prepared by the method of differential 

centrifugation [23] and were stored at -80º C until further analysis. The protein content of the 

microsomes was determined by the method of Lowry et al. [24], with bovine serum albumin 

as the standard (Sigma-Aldrich GmbH, Deisenhofen, Germany). Subsequently, CYP-selective 

enzyme activities were determined by previously published methods, involving 

ethoxyresorufin O-deethylation for CYP1As [25], pentoxyresorufin O-dealkylation for 

CYP2Bs [25], tolbutamide 4-hydroxylation for CYP2Cs [26], and midazolam 1’- and 4-

hydroxylation for CYP3As, respectively [27]. The incubation mixture contained a NADPH-

generating system (1 mM NADPH, 10 mM glucose 6-phosphate, 5 mM MgCl2, and 

2 international units/ml glucose 6-phosphate dehydrogenase), rat liver microsomes, and the 

respective CYP isoform-specific substrate (ethoxyresorufin, pentoxyresorufin, tolbutamide or 

midazolam for CYP1As, CYP2Bs, CYP2Cs and CYP3As, respectively). Enzyme reactions 

were terminated by either ice-cold methanol or acetonitrile. High performance liquid 
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chromatographic analyses were performed while adhering to published methods [26,27]. The 

fluorescence of resorufin was quantified at 550 nm excitation and at 589 nm emission 

wavelengths [25]. Finally, beyond the determination of ‘intrinsic’ microsomal CYP isoform 

activities, expressed as [pmol metabolite/(mg microsomal protein*min)], the total CYP 

isoform activities of the LL and the NLL were also extrapolated after scaling with the 

corresponding weights of the LL or NLL, and displayed in relative units (per cent of control).  

RNA isolation and quantitative real-time polymerase chain reaction (RT-PCR) 

Total RNA was isolated from liver samples (TRI reagent, Molecular Research Center Inc., 

OH) according to the manufacturer’s instructions. The purity and the concentration of the 

RNA samples were determined spectrophotometrically (NanoDrop 1000, Thermo Fisher 

Scientific Inc., Waltham, MA). RNA (3 µg) was reverse-transcribed into single-stranded 

cDNA (Maxima First Strand cDNA Synthesis Kit, Thermo Fisher Scientific Inc.), and RT-

PCR was performed (Maxima SYBR Green qPCR Master Mix, Thermo Fisher Scientific Inc.) 

using the respective primers for CYP isoforms: CYP1A2, CYP2B1, CYP2B2, CYP3A1, 

CYP2C6, CYP2C11, CYP2C13 (Table 1). The quantity of the target mRNA relative to that of 

the housekeeping gene hypoxanthine phosphoribosyltransferase (HPRT) was determined [28]. 

Histopathological analysis 

Liver samples were excised from identical anatomical parts of the LL and the NLL, fixed in 

4% neutral-buffered formaldehyde, and embedded in paraffin. Sections of 3-5 µm were cut, 

deparaffinized (EZ Prep 10x, F. Hoffmann-La Roche AG Konzern, Basel, Switzerland) and 

rehydrated. Antigen retrieval was performed for 30 min with a prediluted solution (Cell 

Conditioning 1, Ventana Medical Systems, F. Hoffmann-La Roche AG Konzern) designated 

for automated immunohistochemical slide stainers. A standard immunohistochemical reaction 

was performed in an automated immunohistochemical reaction slide staining system 
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(BenchMark ULTRA, Ventana Medical Systems, F. Hoffmann-La Roche AG Konzern) with 

a respective detection kit (ultraView Universal DAB Detection Kit, F. Hoffmann-La Roche 

AG Konzern) involving a standard horseradish peroxidase-diaminobenzidine reaction. Rabbit 

polyclonal primary antibodies against CYP3A1 (BML-CR3310-0025; Enzo Life Sciences 

Inc., Farmingdale, NY) were applied at 42°C for 32 min in a dilution of 1:1000. Manufacturer 

instructions were always followed. Sections were counterstained with hematoxylin and 

scanned to produce digital material. 

Statistical analysis 

Data were expressed as mean ± standard deviation. Statistical analysis of parametric data 

involved analysis of variance test with Bonferroni’s post hoc test. Statistical significance was 

declared in case of P-values equaling or below 0.05. GraphPad Prism 6 (GraphPad Software 

Inc., La Jolla, CA) was used for analyses and visualization.  

Results 

Pentobarbital sleeping test 

Sleeping time gradually increased after PVL with a significantly elevated peak at 72h 

(P=0.0451), and thereafter normalized to control levels (Figure 2). However, sleep latency 

(the time for complete loss of righting reflex after pentobarbital injection) at each time point 

was similar to that of the control group (data not shown). 

Liver lobe weights 

Following PVL, the weight of the LL, constituting 76±1.83% of total liver weight and 

3.77±0.27% of bw in controls, progressively decreased to only 15.25±7.18% of total liver 

weight and 0.63±0.33% of bw by 336h (P<0.0001). Meanwhile, NLL weights significantly 

increased from the control values of 23.25±1.71 % of total liver weight and 1.17± 0.05 % of 

bw to 84.25±6.4% of total liver weight and 3.37±0.29 % of bw by the end of the experiment 
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(P<0.0001). A slight, but significant decrease in total liver weight was observed 24h after 

PVL; however, total liver weight remained essentially unchanged thereafter (Figure 3). 

In vitro CYP enzyme activity assays 

The ‘intrinsic’ microsomal CYP activities (pmol / mg protein*min) were assessed initially 

(Figures 4-7). Enzyme activities of CYP1A and CYP3A (measured both by midazolam 1’- 

and 4-hydroxylation) displayed very similar characteristics (Figures 4a, 7a, 7c). 24h after 

PVL, enzyme activities were significantly increased in the NLL, after which the activities of 

both lobes gradually decreased until 72h. Thereafter however, the enzyme activities diverged. 

In the NLL, a significant increase in ethoxyresorufin O-deethylation as well as in midazolam 

1’- and 4-hydroxylation was observed at 168h compared to control values, followed by 

convergence to baseline by 336h. Meanwhile, enzyme activities in LL, despite a temporary 

insignificant gain, exhibited a downward tendency beyond 48h. Consequently, a discrepancy 

developed between enzyme activities of LL and NLL, which resulted in a statistically 

significant difference as early as 24-48h, and became the most prominent at the late time 

points of 168-336h. CYP2B enzyme activities showed some similarities to that of CYP1A and 

CYP3A; however, both the late rise of CYP2B activity in NLL, and concomitantly, the 

discrepancy of LL and NLL activities were moderate and only tendentious (Figure 5a). 

CYP2C activities displayed completely different features (Figure 6a). Tolbutamide 4-

hydroxylation activity of both the LL and the NLL underwent a sharp and significant decrease 

immediately post-PVL. However, after 168-336h, enzyme activity in the NLL showed a late 

convergence to the baseline, while the LL remained permanently depressed, which also 

resulted in a gaping discrepancy and a significant difference of CYP2C enzyme activities 

between LL and NLL at the late time points of 168-336h. Changes of total CYP activities 

extrapolated from ‘intrinsic’ activities by scaling with the weight of LL or NLL were 

generally very similar to the corresponding ‘intrinsic’ microsomal CYP activities, with 
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matching curve characteristics (Figures 4b, 5b, 6b, 7b, 7d). However, the ‘up-scaling’ with LL 

and NLL weights further amplified the results observed in terms of ‘intrinsic’ microsomal 

activities primarily in the later stages. Thereby, while the lowered activity of the LL further 

sank, the progressively increased activity of the NLL became more prominent due to the shift 

of lobe weights, resulting in significantly elevated total NLL CYP1A, CYP2C, and CYP3A 

function even at 336h, as well as a greater interlobar discrepancy, also in terms of CYP2B. 

Subsequent to the surge in total CYP activity of the NLL, the combined total CYP1A and 

CYP3A activities of the liver were also significantly elevated at 168h compared to control 

values. Whereas the redistribution of total liver CYP function was observable in terms of all 

isoforms, reflected in a rise from the 28±2% control functional contribution of the NLL to the 

total extrapolated CYP function of the liver to 96%±2% by 336h (P<0.0001). 

Transcriptional expression of CYP enzymes 

The mRNA levels of CYP2B1, CYP2B2, CYP3A1 reflected generally similar changes 

(Figures 5c, 5d, 7e). Here, mRNA levels of the NLL showed an early, steep and significant 

increase in the 24-48h period, followed by a rapid redistribution to baseline levels. 

Meanwhile, mRNA levels in the LL showed either only a modest increment (CYP2B1 and 

CYP2B2) or were unchanged (CYP3A1). Hence, a significant difference was verified 

between LL and NLL mRNA expression levels, confined to the early postoperative period of 

24-48h, peaking at 48h. While a gap of LL and NLL mRNA expression levels was also 

present in case of CYP1A2 (Figure 4c), instead of only an early localization, it was 

observable throughout the whole postoperative period from 24h to 336h, which was generated 

by a dramatic, immediate and definite reduction of CYP1A2 mRNA expression in the LL, in 

parallel to an upheld (and at 48h, tendentiously increased) mRNA expression of the NLL. 

Again, CYP2C6, CYP2C11, CYP2C13 mRNA concentrations displayed different 

characteristics (Figure 6c-e). While the mRNA levels of the LL were always significantly and 
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permanently depressed, CYP2C mRNA expression in the NLL was either maintained 

(CYP2C6), or showed only a temporary decrement with later re-convergence either bordering 

(CYP2C13), or even reaching the baseline levels (CYP2C11). As a result, a significantly 

higher mRNA expression in the NLL was once again displayed dominantly in the later stages 

of 168-336h, but was also present at 48h in terms of CYP2C6 and CYP2C13. 

Histopathological analysis of CYP3A1 protein 

Representative images of the CYP3A1 immunohistochemical reaction are shown at various 

termination timepoints (Figure 8). CYP3A1 positivity of the LL decreased after PVL and 

remained permanently lower. While positivity in the NLL was also lower as compared to 

controls at 168h, a maintained expression between 24-72h resulted in a difference of CYP3A1 

positivity between LL and NLL in the early postoperative period. 

Discussion 

Future liver remnant enlargement via PVO remains the sole curative option for a wide range 

of patients with liver malignancies [3,7,29]. During the induced liver regeneration process, the 

precise alterations of hepatic drug metabolism are still incompletely understood, despite its 

key role in both hepatic function and the metabolism of endogenous and exogenous 

compounds [30]. Our primary objective was the temporal and regional, multi-level 

characterization of hepatic drug metabolism and its inherent CYP enzymes during PVL 

induced liver regeneration in rat. The present study found an early, transient deterioration of 

the global drug metabolizing capacity, which was echoed by the contemporary individual 

functions of both ligated and non-ligated lobes. We verified a solid, disparate difference 

between the drug metabolism of the LL and NLL. As a result of an adaptive response of 

active transcriptional upregulation, drug metabolism in the NLL was increased and re-

established, meanwhile, permanently depressed in the LL due to the lack of such adaption. 
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Hepatic drug metabolism became overwhelmingly redistributed, depending nearly exclusively 

on the NLL. Our findings also proved the isoform-dependence of CYP enzyme activity and 

transcription alterations following PVL in rat. 

PVL induces a chain of events, ultimately culminating in a very special form of liver 

regeneration [5,6]. Eventually, the LL undergoes atrophy and underlying necroapoptotic cell 

death, meanwhile the NLL displays an intensive cellular proliferation and hypertrophy 

[21,29], which was repeatedly proven by the literature [2,5,29,30], and previous reports of our 

workgroup [20,21,31]. In the present study, it was similarly reflected by liver lobe weights; 

thereby validating the standard application of the PVL model, and allowing further, more 

sophisticated analysis. Beyond the phenomenon, morphological features following PVO 

possess key clinical significance, for the timing of stage II resection is consensually 

determined by CT liver volumetry [2-4,7]. However, (posthepatectomy) liver failure is 

directly dependent on liver function, but not liver volume, and the two may dramatically 

differ, according to recent reports [8,9]. Therefore, the significance of functional analysis 

during PVO procedures is dramatically increasing. A core hepatic function is the ability to 

convert and eliminate endogenous and exogenous chemical substances, generally referred to 

as drug metabolism, which directly relies on key CYP enzymes [11-13]. Besides non-genetic 

factors such as age and hormonal status, CYP activities and expressions are influenced by a 

variety of environmental and acquired factors such as nutrition, co-medication, infections, 

inflammation and cancer [15], which may either induce their activities through transcriptional 

upregulation over days, or oppositely reduce CYP activities through downregulation of 

transcription or instantaneous posttranslational inactivation [12]. Any changes in CYP 

enzyme activities could subsequently result in the alterations of drug metabolism, which may 

lead to adverse drug-related effects of drug intoxication or therapeutic failure [13]. In 

particular, pathophysiological conditions of the liver, including liver regeneration after partial 
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hepatectomy [32] or PVO [16], carry the grave danger of reduced hepatic function and CYP 

activity derangements, which is well-reflected in the CYP-dependence of several quantitative 

liver function tests [4]. Therefore, an improved understanding of PVO-induced alterations in 

hepatic drug metabolism and CYP activities holds great clinical potential for the prevention of 

drug-related complications and the extension of the available knowledge regarding liver 

function alterations during induced liver regeneration. In our pursuit of the analysis of drug 

metabolism after PVL, a proximal element was the pentobarbital sleeping test, representing 

the CYP-mediated metabolism and elimination of pentobarbital. Herein, the overall CYP 

activity, as well as global drug metabolism was temporarily reduced until 72h after PVL and 

was retrieved by the end of the second week. In accordance with this, Takemura et al [30] and 

Starkel et al [33] also found a transient reduction in hepatic drug metabolism following PVL. 

Furthermore, on a larger scale, the transitional deterioration of global liver function after 

PVO, as confirmed by different functional tests, was described both by our and other previous 

literature reports [20,31,34]. On the other hand, the sleeping test fails to assess the individual 

functional aspects of the LL and the NLL. Whereas following the first step (i.e. PVO) of two-

step liver resections incorporating preoperative liver remnant enlargement by PVO, both the 

LL and the NLL persist in the body; however, after the interval period and the subsequent 

second-step resection of the LL, only the NLL is preserved, upon which the metabolic 

demands of the body rest. Therefore, regional functional analysis, and specifically, the 

assessment of the NLL function is of utmost importance, for which we embarked on the 

investigation of drug metabolism as well as the expression and activities of underlying CYP 

isoenzymes individually in the LL and the NLL. With interspecies differences of sequence, 

substrate specificity and regulation in mind [12,13], several representative, clinically most 

relevant CYP isoenzymes were chosen from the CYP1, CYP2 and CYP3 families, which are 

near-exclusively responsible for the metabolism of drugs and other xenobiotics [11]. CYP1A 
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enzymes are known for their great interspecies homology; therefore, they provide good 

ground for comparison between human and rat [11,12]. CYP2B1 and CYP2B2 isoenzymes 

metabolize anaesthetic drugs, and also provide good comparison between human and rat 

[11,12]. The CYP3A subfamily is critically important both in humans and rats, for it 

metabolizes approximately 40% of drugs on the market. They comprise ~30% of CYP content 

of the human liver, with CYP3A4 as the dominant enzyme. In rat, CYP3As are also essential, 

even though, they make up a smaller fraction of hepatic CYPs. On the other hand, a number 

of induction/inhibition differences between human CYP3A4 and its rat correspondent 

CYP3A1 are known, for which CYP3As provide highly-relevant interspecies comparison, 

with certain limitations [11-13]. In human, CYP2Cs are of limited significance metabolizing 

only ~16% of drugs, and constituting just 20% of liver CYP content, whereas in rat, with over 

50%, they are the most abundant CYPs contained in the liver with a correspondingly high 

metabolic relevance. Finally, rat CYP2Cs show great sexual predominance, with CYP2C11 

and CYP2C13 as the most prominent male-specific isoforms, whereas CYP2C6 is sex-

independent [11-13]. Consequently, in the present study, CYP1A, CYP2B, CYP2C and 

CYP3A enzyme activities, along with CYP1A2, CYP2B1, CYP2B2, CYP2C6, CYP2C11, 

CYP2C13, CYP3A1 mRNA levels were measured to better understand alterations in CYP 

enzyme functions and the underlying transcriptional regulation. The ‘intrinsic’ activities of 

CYP1A and CYP3A, and to a lesser extent, CYP2B displayed a very similar pattern of an 

early rise at 24h, followed by a downward tendency up to 72h, after which NLL activities 

were increased before returning to baseline, meanwhile enzyme activities of the LL remained 

permanently low. Concomitantly, total lobar activities of the same enzymes were generally 

matching to that of the ‘intrinsic’ enzyme activities. However, lobe weight-scaling further 

amplified the discrepancies of the LL and the NLL activities, as well as the potent increase of 

NLL function at 168-336h, which also led to an increased total liver activity  at 168h, and a 
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massively raised functional share of the NLL of total liver activity, going from the control 

28% to 96% at 336h. Whereas, at the mRNA level, sharp contrast was observed between the 

LL and NLL, for the NLL exhibited a very early transcriptional upregulation of CYP1A2, 

CYP2B1, CYP2B2 and CYP3A1 at 24-48h, which was lacking in the LL. To interpret these, 

the increase in CYP enzyme function at 24h is considered to be the consequence of CYP 

protein stabilization and/or de novo protein synthesis in NLL [12]. Meanwhile, CYP2C results 

were markedly different. Both ‘intrinsic’ and total lobar activities as well as the mRNA levels 

of the male-dominant CYP2C11 and CYP2C13 were suddenly sharply reduced in both lobes, 

and a late re-convalescence of both enzyme functions and mRNA expression to baseline were 

seen only in the NLL at the late time point of 336h. CYP2C6 expression was also 

downregulated in LL; however, it did not display any significant fluctuation in NLL. Perhaps 

the most striking observation is the dramatic difference of lobar responses, as part of which 

drug metabolism in the LL was permanently deteriorated, whereas re-established in the NLL, 

which may be explained by the far-reaching effects of PVL. Beyond the seemingly solitary 

action of portal blood flow stoppage to the LL, PVL induces a chain of events, such as the 

complete redistribution of the splanchnic circulation (arterialized hypoperfusion of the LL; 

massive portal hyperperfusion of the NLL) and modification of blood decomposition, by 

which the NLL receives an increased portion of nutritional agents, growth factors, hormones, 

and bacterial products [29]. These culminate in the induction of a very special form of liver 

regeneration characterized by the atrophy-hypertrophy complex [29,35], and diverse 

pathophysiological changes of structural and microvascular remodeling within the LL and the 

NLL [20,29], which may ultimately reason the different functional capacities of the LL and 

the NLL [31,35]. The other important finding that should be addressed is the markedly 

different pattern of changes regarding the CYP2C enzymes as compared to CYP1A, CYP2B 

and CYP3A. In the early postoperative period, both lobes exhibited a dramatic reduction in 
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CYP2C enzyme activity as well as transcription, which may be multifactorial. Earlier reports 

also confirmed a transiently reduced CYP-dependent drug metabolizing capacity after PVL. 

Takemura et al concluded a lag of functional (CYP3A2, CYP2C11) to morphological 

regeneration [30], whereas Starkel et al reported CYP3A and CYP2E1 functional 

deterioration in the very early (0.5-8h) postoperative period secondary to surgical stress but 

not liver regeneration [33]. Regarding the molecular background of CYP depression, both 

studies agreed on the central role of inflammatory cytokines (IL-1β, IL-6, TNF-α), as well as 

the upregulation and increased nitric oxide production of inducible nitric oxide synthase 

[30,33]. During different pathophysiological conditions such as infection, inflammation and 

cancer, increased levels of circulating proinflammatory cytokines lead to CYP 

downregulation [17,36] through the repression of nuclear receptors (pregnane X receptor and 

constitutive androstane receptor) involved in transcriptional regulation of several CYPs 

(CYP2B, CYP2C, CYP3A) [37,38]. Meanwhile, the same cytokines, as well as nitric oxide 

also play a central role in the initiation and mediation of liver regeneration after both partial 

hepatectomy and PVO, when their serum levels are sharply increased secondary to 

inflammatory activation and hemodynamical changes, respectively [29,35,39]. Therefore, it is 

highly plausible that increased levels of inflammatory cytokines as well as nitric oxide may be 

partly responsible for the transient deterioration of CYP function following PVL. As 

compared to these previous reports, our study is the first to investigate the underlying 

transcriptional regulation through the analyses of corresponding, specific mRNA expressions 

parallel to the enzyme activities of a wide range of highly relevant CYP enzymes throughout 

the full duration of PVL induced liver regeneration. CYP2Cs displayed marked differences in 

enzyme activity as well as underlying mRNA levels compared to the other subfamilies both in 

the early and late phase of regeneration. During the latter, the waning effects of cytokines and 

nitric oxide could not fully account for the discrepancy of CYP2Cs, whereas a possible 
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explanation might lie in sex hormone-dependent regulation. The expression of CYP2C 

enzymes, and particularly, the male predominant CYP2C11 and CYP2C13 is regulated by the 

hypothalamus-hypopituitary-gonadal axis and primarily affected by the actual balance of 

testosterone/estrogen levels [12]. Besides exogenous chemicals, endogenous disease states are 

also capable of causing reduced CYP expression or function by interfering with sex hormonal 

levels [12]. Earlier studies reported that pathophysiological states of the liver (including 

partial hepatectomy, PVL, bile duct ligation) led to the ‘demascularinization’ of drug 

metabolism (decreased expression of male-specific and increased expression of female-

specific enzymes) along with lower serum testosterone and increased (gastric parietal cell-

generated) estradiol levels, as well as hypothalamic-hypopituitary-gonadal suppression 

[16,32,40]. Consequently, regarding the present study, an increased presence of female sex 

hormones may have contributed to the rapid and prolonged decrement of CYP2C enzyme 

activities and male-specific CYP2C11 and CYP2C13 mRNA expressions, while CYP2C6 

expression of the NLL was preserved. In the meantime, the restitution and hyperfunction of 

sex hormone-independent CYP1A and CYP3A1 activities by 168h and early steep increase of 

their respective mRNA expressions could indicate a potent adaptive response of the NLL; 

perhaps an endogenous ‘escape’ mechanism of the organism to mitigate the functional 

suppression of CYP2C enzymes. Meanwhile, the LL failed to present such an increment, most 

likely due to the described severe morpho-structural consequences of PVL. Finally, the 

representative CYP3A1 immunohistochemical reaction also indicated a preserved early 

postoperative positivity of CYP3A enzymes in the NLL as compared to the progressively 

diminished positivity of the LL. Overall, the individual drug metabolism of the NLL seems to 

be re-established, whereas permanently deteriorated in the LL, confirming disparate 

tendencies of adaption, and a shift of hepatic drug metabolism towards the NLL. These are in 

accordance with the latest studies of our workgroup, involving complex liver functional 



Kovács et al. 
 

19 
 

analyses following PVL [20,31]. Concerning clinical significance, the present results may 

help characterize liver functional changes during two-step liver resections incorporating 

future liver remnant enlargement via PVO procedures, translating as the enhanced itineration 

of the second-step resection. Furthermore, an improved knowledge of liver drug metabolism 

could help prevent drug complications through the adaption of medication dosage to the 

actual capacities of hepatic CYPs. This brings about the modern concept of personalized 

medication and patient-tailored drug regimens, such as the estimation of the drug 

metabolizing capacity based on the genotyping and expressional patterns of CYPs [18]. The 

current analysis underlined CYP isoform-dependent responses, which take this personalized 

approach a step further, by suggesting an even more precisely tailored medication strategy. 

Therein, drug dosage may be weighed against the contemporary activities of the specifically 

corresponding CYP isoforms. A noteworthy limitation of our study is the utilization of a 

‘healthy liver’ model, concerning which our goal was the most direct evaluation of the 

pathophysiological effects of PVO on hepatic drug metabolism. It is only a partial hindrance, 

since clinically, tumors often develop in parenchymal disease-free livers. Such is the case of 

metastases, the most frequent liver tumors worldwide [1]. However, (predominantly primary) 

liver tumours often manifest in disease-affected liver parenchyma (steatohepatitis, fibrosis, 

cirrhosis, cholestasis, etc.), which may interfere with CYP expression and hepatic drug 

metabolism. Supporting this, the Heidelberg workgroup found reduced CYP2E1 expression in 

liver fibrosis, identified with liver stiffness elastography, as well as boosted CYP expression, 

drug metabolism and subsequently increased, carcinogenic etheno DNA-adducts in (non-

fibrotic) alcoholic liver disease [41,42]. Therefore the in-depth evaluation of CYP regulation 

in liver disease states is also of chief clinical relevance. Further research is imperative for the 

complex understanding of the role and individual changes of CYP enzymes following PVO 

procedures in both the absence and presence of parenchymal liver diseases. 
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Conclusions 

PVO and PVL remain key treatment options of complicated liver tumors, during which 

functional aspects, such as the elimination of endogenous- and exogenous compounds are 

crucial. Monitoring the alterations in hepatic drug metabolism and underlying CYP enzymes 

is critically important for better understanding of post-PVO liver function, as well as for the 

prevention of drug-related complications. Our study verified a transient suppression of global 

hepatic function, followed by the adaptive response of NLL and the permanent deterioration 

of the LL resulting in solid interlobar differences. Furthermore, changes were found to be 

isoform-dependent, with somewhat different expression and activity profiles of CYP1A, 

CYP2B and CYP3A as compared to CYP2C enzymes. Results may contribute to knowledge 

regarding liver function as well as personalized medication strategies during induced liver 

regeneration; however, further investigation is required.  
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Figure legends 

Figure 1. Portal vein ligation and experimental setup. Portal vein ligation affecting 

approxiately 80% rat liver parenchyma was performed according to the previously published 

method of our workgroup. (a) The common portal branch of the median (ML), left lateral 

(LLL) and caudate (CL) liver lobes was atraumatically dissected, isolated and surgically 

ligated with a 6-0 polipropylene suture, in a position (indicated by double arrows) distal to the 

debranching point of the portal vein tributary of right lateral lobes (RLL). As a result, the ML, 

LLL and CL liver lobes are deprived of portal vein blood inflow (‘ligated lobes’ labelled as 

red), whereas the portal circulation of the RLL reimans intact (‘non-ligated lobes’ labelled as 

green). ‘*’ indicates the main trunk of the portal vein. Experimental setup and group order. (b) 

Five groups of male Wistar rats were initially subjected to the portal vein ligation operation 

(indicated by black dots), and allowed different survival times of 336, 168, 72, 48 and 24 

hours (n=4 each) prior to the ultimate experimental analysis. A separate group of rats was 

spared the operation to be used as controls (n=4) (indicated by an empty circle). All animals 

(operated as well as controls) were subjected to the ultimate experimental analysis (inicated 

by double, capped vertical lines), comprising a pentobarbital sleeping test, followed by the 

sacrificing of the animal and the harvest of liver lobes for later laboratory analysis. (b)  

Figure 2. Pentobarbital sleeping test. A sleeping test with an intraperitoneal injection of 

pentobarbital (30 mg/body weight kilogram) was performed on control rats, as well as on 

animals subjected to portal vein ligation (PVL) and different survival periods. Statistical 

analysis was performed with analysis of variance (ANOVA) with Bonferroni’s post hoc test 

to correct for multiple comparisons. Results are given as means ± standard deviation, 

representing n=4 animals per time points.  ‘*’ indicates P< 0.05 for actual versus control 

values. 
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Figure 3. Liver lobe weights. The individual weights of ligated and non-ligated liver lobes 

were assessed following portal vein ligation (PVL) and in control animals, and ultimately 

expressed both as per cent of total liver weight, (a) and per cent of body weight. (b) Statistical 

analysis was performed with analysis of variance (ANOVA) with Bonferroni’s post hoc test 

to correct for multiple comparisons. Results are given as means ± standard deviation, 

representing n=4 animals per time points.  ‘*’, ‘&’ and ‘σ’ indicate p < 0.05 for actual versus 

control values of ligated lobes, non-ligated lobes or total liver, respectively. ‘#’ indicates P< 

0.05 ligated lobes versus contemporary non-ligated lobes.  

Figure 4. CYP1A enzyme activity and CYP1A2 mRNA expression. Cytochrome P450 

(CYP) 1A enzyme activity, (a, b) as well as corresponding CYP1A2 mRNA expression (c) of 

ligated and non-ligated liver lobes were assessed following portal vein ligation (PVL) and in 

control animals. CYP1A enzyme activity was represented by the characteristic O-deethylation 

of ethoxyresorufin, and ultimately expressed as both ‘intrinsic’ activity per mg of microsomal 

protein, (a) as well as the total activity of ligated and non-ligated lobes. (b) Statistical analysis 

was performed with analysis of variance (ANOVA) with Bonferroni’s post hoc test to correct 

for multiple comparisons. Results are given as means ± standard deviation, representing n=4 

animals per time points.  ‘*’, ‘&’ and ‘σ’ indicate p < 0.05 for actual versus control values of 

ligated lobes, non-ligated lobes or total liver, respectively. ‘#’ indicates P< 0.05 ligated lobes 

versus contemporary non-ligated lobes.  

Figure 5. CYP2B enzyme activity and CYP2B1/2 mRNA expression. Cytochrome P450 

(CYP) 2B enzyme activity, (a, b) as well as corresponding CYP2B1 and CYP2B2 mRNA 

expression (c, d) of ligated and non-ligated liver lobes were assessed following portal vein 

ligation (PVL) and in control animals. CYP2B enzyme activity was represented by the 

characteristic O-dealkylation of pentoxyresorufin, and ultimately expressed as both ‘intrinsic’ 

activity per mg of microsomal protein, (a) as well as the total extrapolated activity of ligated 
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and non-ligated lobes. (b) Statistical analysis was performed with analysis of variance 

(ANOVA) with Bonferroni’s post hoc test to correct for multiple comparisons. Results are 

given as means ± standard deviation, representing n=4 animals per time points.  ‘*’, ‘&’ and 

‘σ’ indicate p < at least 0.05 for actual versus control values of ligated lobes, non-ligated 

lobes or total liver, respectively. ‘#’ indicates P< 0.05 ligated lobes versus contemporary non-

ligated lobes. 

Figure 6. CYP2C enzyme activity and CYP2C6, CYP2C11, CYP2C13 mRNA 

expression. Cytochrome P450 (CYP) 2C enzyme activity, (a, b) as well as corresponding 

CYP2C6, CYP2C11 and CYP2C13 mRNA expression (c-e) of ligated and non-ligated liver 

lobes were assessed following portal vein ligation (PVL) and in control animals. CYP2C 

enzyme activity was represented by the characteristic 4-hydroxylation of tolbutamide, and 

ultimately expressed as both ‘intrinsic’ activity per mg of microsomal protein, (a) as well as 

the total extrapolated activity of ligated and non-ligated lobes. (b)  Statistical analysis was 

performed with analysis of variance (ANOVA) with Bonferroni’s post hoc test to correct for 

multiple comparisons. Results are given as means ± standard deviation, representing n=4 

animals per time points.  ‘*’, ‘&’ and ‘σ’ indicate P< 0.05 for actual versus control values of 

ligated lobes, non-ligated lobes or total liver, respectively. ‘#’ indicates P< 0.05 ligated lobes 

versus contemporary non-ligated lobes.  

Figure 7. CYP3A enzyme activity and CYP3A1 mRNA expression. CYP3A enzyme 

activity, (a-d) as well as corresponding CYP3A1 mRNA expression (e) of ligated and non-

ligated liver lobes were assessed following portal vein ligation (PVL) and in control animals. 

CYP3A enzyme activity was represented by the characteristic 1’- and 4-hydroxylation of 

midazolam, and ultimately expressed as both ‘intrinsic’ activity per mg of microsomal 

protein, (a, c) as well as the total activity of ligated and non-ligated lobes. (b, d) Statistical 

analysis was performed with analysis of variance (ANOVA) with Bonferroni’s post hoc test 
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to correct for multiple comparisons. Results are given as means ± standard deviation, 

representing n=4 animals per time points.  ‘*’, ‘&’ and ‘σ’ indicate p < 0.05 for actual versus 

control values of ligated lobes, non-ligated lobes or total liver, respectively. ‘#’ indicates P< 

0.05 ligated lobes versus contemporary non-ligated lobes.  

Figure 8. CYP3A1 immunohistochemical reaction. Standard immunohistochemical 

reactions were performed on formaldehyde-fixed-paraffin-embedded sections of ligated and 

non-ligated liver specimens of animals subjected to portal vein ligation (PVL) (b-f, h-l) and 

controls (a, g). The reactions were simultaneously processed using identical protocols in an 

automated slide stainer, with primary antibodies against Cytochrome P450 (CYP) 3A1 and 

standard labelling based on horseradish-peroxidase-diaminobenzidine interaction. On all 

sections, CYP3A1 protein expression displayed a uniform pericentral localization. White bars 

represent 200 µm. 



Table 1. Primer sequences. Sequences of polymerase chain reaction (PCR) primers for 

cytochrome P450 (CYP) enzymes and hypoxanthine phosphoribosyltransferase (HPRT). 

Gene 5’→3’Sequence Primers Amplicon 

size (bp) 

CYP1A2 Forward 

Reverse 

CCTACAACTCTGCCAGTCTCC 

AGTAGCAGCTCTGGGGCTAA 

89 

CYP2B1 Forward 

Reverse 

CTCCTCGTGGGCTTCTTGTT 

TCTCGAAGCTGCATGAAGGAA 

149 

CYP2B2 Forward 

Reverse 

TGCATGGATGAGAGAGGAGAAG 

TGAGCAGGAAACCATAGCGG 

134 

CYP2C6 Forward 

Reverse 

AGCAGTCCCTGGACACAGTT 

TGTGATTTTCCTGCTTCCACTT 

205 

CYP2C11 Forward 

Reverse 

TGTTTGGAGCTGGCACAGAA 

ACTTTAGCTGTGACATCCACG 

88 

CYP2C13 Forward 

Reverse 

TTCTCAGCAGGAAAACGGATGT 

GGAAAGTGGGAGGAACTGAAGAA 

169 

CYP3A1 Forward 

Reverse 

ACCAGCAGCACACTTTCCTT 

GAGGTGCCTTATTGGGCAGA 

106 

HPRT Forward 

Reverse 

CTCATGGACTGATTATGGACAGGAC 

GCAGGTCAGCAAAGAACTTATAGCC 

123 

 


















	Kovacs_ESR_manuscript_revised
	Kovacs_ESR_Table1
	Kovacs_ESR_Fig1
	Kovacs_ESR_Fig2
	Kovacs_ESR_Fig3
	Kovacs_ESR_Fig4
	Kovacs_ESR_Fig5
	Kovacs_ESR_Fig6
	Kovacs_ESR_Fig7
	Kovacs_ESR_Fig8

