17 research outputs found

    Involvement of the caveolae in the permeability of the blood-brain barrier after envenoming by Phoneutria nigriventer in rats

    Get PDF
    Orientador: Maria Alice da Cruz-HöflingDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de BiologiaResumo: Neste trabalho investigamos a permeabilização da barreira hematoencefálica (BHE) pela peçonha da aranha Phoneutria nigriventer (PNV) através da via transcelular no cerebelo de ratos. As cavéolas foram analisadas nas células endoteliais pela expressão de proteínas associadas à sua formação (caveolina-1, Cav-1 e dinamina-2, Din2) e internalização (caveolina-1 fosforilada, pCav-1 e quinase da família Src, SKF), e nos astrócitos com avaliação da caveolina-3 (Cav-3) e da conexina-43 (Cx43) (formadora de junções comunicantes). A ação do PNV sobre o endotélio também foi avaliada pela ativação (acoplamento) ou inativação (desacoplamento) da enzima eNOS, produtora de óxido nítrico (NO). As estruturas que compõe a BHE foram avaliadas através de microscopia eletrônica de transmissão. Inicialmente, o estudo de Cav-1 contemplou sua localização, expressão gênica e proteica após o envenenamento em diferentes idades, ratos neonatos eram mais suceptíveis ao envenenamento do que ratos adultos. Após PNV, a imunomarcação para Cav-1 foi mais evidente na camada granular e molecular e em neurônios de Purkinje. A expressão Cav-1 e Din2 (foramdoras das vesículas e seu gargalo, respectivamente) aumentou em períodos de envenenamento agudo (1 h), de recuperação (5 h) e na ausência de sinais clínicos (24 h); em contrapartida SKF e pCav-1 envolvidas na internalização caveolar foram superexpressas em períodos opostos (às 2 h e 72 h). O PNV induziu aumento da metaloproteinase-9 da matriz (MMP9), importante mediadora de quebra da BHE e aumentou a formação e o tráfego de vesículas no endótelio após envenenamento. A análise de eNOS revelou desacoplamento (aumento de monômeros) nos períodos de envenenamento agudo (1-2 h) com progressivo retorno e super-expressão de dímeros (re-acoplamento) às 72 h; essas alterações foram relacionadas à ação do PNV sobre os níveis intracelulares de cálcio investigado pelo aumento na expressão de calmodulina e confimado pela localização de calbindina-D28. Os dados revelam a interferência do PNV sobre a homeostase endotelial e função vascular ao afetar o sistema eNOS/NO, importante controlador do tônus vascular. Nos astrócitos, as cavéolas são formadas por Cav-3 e sua superexpressão é associada a doenças neurológicas. O PNV aumentou significativamente os níveis basais de Cav-3 em astrócitos GFAP positivos (astrogliose reativa) em períodos de aumento de Cx43 (às 1, 5 e 24 h), e na vigência de edema citotóxico nos pés astrocitários e alterações nos contatos sinápticos axo-dendríticos e axo-somáticos. Em conjunto os resultados revelam que: (a) a quebra da via transcelular da BHE pelo PNV tem aumento da endocitose via cavéolas; (b) componentes da unidade neurovascular, como endotélio, astrócitos e neurônios estão intimamente envolvidos; (c) no endotélio, os efeitos são mediados pelo sistema eNOS/NO; (d) a SKF ativa o sistema endocítico e de transporte vesicular; (e) nos astrócitos, a dinamica expressão de Cx43 e Cav-3 e o retorno aos níveis basais em paralelo com a ausência de sinais de intoxicação nos animais (72 h) dá evidências de que ambas as proteínas interagem na resposta astrocitária. Os dados permitem sugerir que a presença de peptídeos neurotóxicos no veneno de Phoneutria nigriventer estão no centro dos efeitos aqui relatadosAbstract: In this work, we investigated the blood-brain barrier (BBB) permeabilization induced by Phoneutria nigriventer venom (PNV) in the transcellular route of rats¿ cerebellum. Caveolae was analyzed in endothelial cells accessing the expression of proteins involved in caveolae formation (caveolin-1, Cav-1 and dynamin-2, Dyn2) and internalization (phosphorylated Caveolin-1, pCav-1 and Src kinase family, SKF), in astrocytes caveolae role were evaluated with caveolin-3 (Cav-3) and connexin-43 (Cx43) (gap-junction main protein). PNV action on the endothelium was also investigated through activation (coupling) or inactivation (uncoupling) of eNOS enzyme, responsible for nitric oxide (NO) production. BBB components were evaluated using transmission electron microcopy. Initially, Cav-1 study addressed its localization along with Cav-1 protein and gene expression after envenoming in different age animals, neonate rats were more susceptible to envenoming than adult rats. After PNV, Cav-1 labeling was intense in granular and molecular layers and in Purkinje neurons. Cav-1 and Dyn2 (responsible for caveolae vesicles formation and scission, respectively) expression increased in periods of acute envenomation (1 h), recovery (5 h) and in the absence of clinical signals (24 h); in opposition SKF and pCav-1 involved in caveolae internalization were overexpress in opposite periods (at 2 h and 72 h). PNV induced increases in matrix metaloproteinases-9 (MMP9) an important BBB breakdown mediator, and increases in vesicles formation and traffic in the endothelium after envenoming. The study of eNOS activity revealed uncoupling (increasing in eNOS monomers) in acute periods after envenomation (1 h and 2 h) and progressive return followed by overexpression of dimers (re-coupling) at 72 h; those alterations were related to PNV action on calcium intracellular levels confirmed by Calmodulin increased expression and confirmed using Calbindin-D28 localization. Data revealed PNV interference on endothelial homeostasis and vascular function once affects the eNOS/NO system, an important vascular tonus controller. In astrocytes, caveolae are formed by Cav-3 and its overexpression is related to neurological disorders. PNV increased the basal levels of Cav-3 in GFAP-positive astrocytes (reactive astrogliosis) in the same periods as increased Cx43 (at 1, 5 e 24 h), during cytotoxic edema in astrocytes end-feet and alterations in axo-dendrites and axo-somatic synaptic contacts. Together, the results revealed that: (a) the BBB breakdown in transcellular route by PNV involves upregulation of caveolae endocytosis (b) the neurovascular unit components such as the endothelium, astrocytes and neurons are intimal involved (c) in the endothelium the effects are mediated by the eNOS/NO system and (d) SKF activates endocytic system and vesicular transport; (e) in the astrocytes, Cx43 and Cav-3 dynamic expression and their return to basal level in parallel with the absence of toxic signals in the animals (72 h) provides evidence that both protein interacts in astrocytes response. The data allows us to suggest that the neurotoxic peptides presented in Phoneutria nigriventer venom are in the center of the effects reported hereMestradoBiologia TecidualMestra em Biologia Celular e Estrutura

    Caveolae As A Target For Phoneutria Nigriventer Spider Venom

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)An important transcellular transport mechanism in the blood-brain barrier (BBB) involves caveolae, which are specialized delta-shaped domains of the endothelial plasma membrane that are rich in cholesterol, glycosphingolipids and the scaffolding protein Caveolina-1 (Cav-1). In this work, we investigated whether the increase in endocytosis and transendothelial vesicular trafficking in rat cerebellum after blood-brain barrier breakdown (BBBb) induced by Phoneutria nigriventer spider venom (PNV) was mediated by caveolae. The expression of Cav-1, phosphorylated Cav-1 (pCav-1), dynamin-2 (Dyn2), Src kinase family (SKF) and matrix-metalloproteinase-9 (MMP9), proteins involved in caveolar dynamics and BBB opening, was investigated. Immunofluorescence, western blotting (WB) and transmission electron microscopy were used to assess changes at 1, 2, 5, 24 and 72 h post-venom. WB showed upregulation of Cav-1, Dyn2 and MMP9 at 1, 5 and 72 h (corresponding, respectively, to intervals when intoxication was most evident, when signs of recovery were present, and when no intoxication was detectable). In contrast, pCav-1 and SKF, which are essential for internalization and transport, decreased when Cav-1 and Dyn2, proteins essential for caveolar formation, were increased. Overall, these changes indicated that vesicular trafficking across the endothelium (high pCav/SKF levels) coincided with lower numbers of caveolae (Cav-1/Dyn2 downregulation) and lower expression of MMP9. Thus, the internalization (disassembly) of caveolae alternates with caveolar neoformation (assembly), resulting in changes in caveolar density in the endothelium membrane. These caveolar dynamics imply tensional mechanical stress that is important in triggering key signaling mechanisms. We conclude that PNV-induced breakdown of transcellular transport in the BBB is caused by an increase in caveolae-mediated endocytosis; this effect was correlated with the progression of temporal signs of envenoming. Caveolar dynamics are probably involved in shear stress and BBBb regulatory mechanisms in this experimental model. (C) 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).54111118Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2005/53625-1]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [486142/2012-4]CNPq [305099/2011-6]FAPESP [2012/24782-5]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Enos Uncoupling In The Cerebellum After Bbb Disruption By Exposure To Phoneutria Nigriventer Spider Venom

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Numerous studies have shown that the venom of Phoneutria nigriventer (PNV) armed-spider causes excitotoxic signals and blood-brain barrier breakdown (BBBb) in rats. Nitric oxide (NO) is a signaling molecule which has a role in endothelium homeostasis and vascular health. The present study investigated the relevance of endothelial NO synthase (eNOS) uncoupling to clinical neurotoxic evolution induced by PNV. eNOS immunoblotting of cerebellum lysates processed through low-temperature SDS-PAGE revealed significant increased monomerization of the enzyme at critical periods of severe envenoming (1-2 h), whereas eNOS dimerization reversal paralleled to amelioration of animals condition (5-72 h). Moreover, eNOS uncoupling was accompanied by increased expression in calcium-sensing calmodulin protein and calcium-binding calbindin-D28 protein in cerebellar neurons. It is known that greater eNOS monomers than dimers implies the inability of eNOS to produce NO leading to superoxide production and endothelial/vascular barrier dysfunction. We suggest that transient eNOS deactivation and disturbances in calcium handling reduce NO production and enhance production of free radicals thus contributing to endothelial dysfunction in the cerebellum of envenomed rats. In addition, eNOS uncoupling compromises the enzyme capacity to respond to shear stress contributing to perivascular edema and it is one of the mechanisms involved in the BBBb promoted by PNV. (C) 2015 Elsevier Ltd. All rights reserved.104713Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)[305099/2011-6]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP [05/53625-1, 2012/24782-5

    Enos Uncoupling In The Cerebellum After Bbb Disruption By Exposure To Phoneutria Nigriventer Spider Venom.

    No full text
    Numerous studies have shown that the venom of Phoneutria nigriventer (PNV) armed-spider causes excitotoxic signals and blood-brain barrier breakdown (BBBb) in rats. Nitric oxide (NO) is a signaling molecule which has a role in endothelium homeostasis and vascular health. The present study investigated the relevance of endothelial NO synthase (eNOS) uncoupling to clinical neurotoxic evolution induced by PNV. eNOS immunoblotting of cerebellum lysates processed through low-temperature SDS-PAGE revealed significant increased monomerization of the enzyme at critical periods of severe envenoming (1-2 h), whereas eNOS dimerization reversal paralleled to amelioration of animals condition (5-72 h). Moreover, eNOS uncoupling was accompanied by increased expression in calcium-sensing calmodulin protein and calcium-binding calbindin-D28 protein in cerebellar neurons. It is known that greater eNOS monomers than dimers implies the inability of eNOS to produce NO leading to superoxide production and endothelial/vascular barrier dysfunction. We suggest that transient eNOS deactivation and disturbances in calcium handling reduce NO production and enhance production of free radicals thus contributing to endothelial dysfunction in the cerebellum of envenomed rats. In addition, eNOS uncoupling compromises the enzyme capacity to respond to shear stress contributing to perivascular edema and it is one of the mechanisms involved in the BBBb promoted by PNV.1047-1

    Caveolae as a target for Phoneutria nigriventer spider venom

    Get PDF
    AbstractAn important transcellular transport mechanism in the blood-brain barrier (BBB) involves caveolae, which are specialized delta-shaped domains of the endothelial plasma membrane that are rich in cholesterol, glycosphingolipids and the scaffolding protein Caveolina-1 (Cav-1). In this work, we investigated whether the increase in endocytosis and transendothelial vesicular trafficking in rat cerebellum after blood-brain barrier breakdown (BBBb) induced by Phoneutria nigriventer spider venom (PNV) was mediated by caveolae. The expression of Cav-1, phosphorylated Cav-1 (pCav-1), dynamin-2 (Dyn2), Src kinase family (SKF) and matrix-metalloproteinase-9 (MMP9), proteins involved in caveolar dynamics and BBB opening, was investigated. Immunofluorescence, western blotting (WB) and transmission electron microscopy were used to assess changes at 1, 2, 5, 24 and 72h post-venom. WB showed upregulation of Cav-1, Dyn2 and MMP9 at 1, 5 and 72h (corresponding, respectively, to intervals when intoxication was most evident, when signs of recovery were present, and when no intoxication was detectable). In contrast, pCav-1 and SKF, which are essential for internalization and transport, decreased when Cav-1 and Dyn2, proteins essential for caveolar formation, were increased. Overall, these changes indicated that vesicular trafficking across the endothelium (high pCav/SKF levels) coincided with lower numbers of caveolae (Cav-1/Dyn2 downregulation) and lower expression of MMP9. Thus, the internalization (disassembly) of caveolae alternates with caveolar neoformation (assembly), resulting in changes in caveolar density in the endothelium membrane. These caveolar dynamics imply tensional mechanical stress that is important in triggering key signaling mechanisms. We conclude that PNV-induced breakdown of transcellular transport in the BBB is caused by an increase in caveolae-mediated endocytosis; this effect was correlated with the progression of temporal signs of envenoming. Caveolar dynamics are probably involved in shear stress and BBBb regulatory mechanisms in this experimental model

    Temporal Relationship Between Aquaporin-4 And Glial Fibrillary Acidic Protein In Cerebellum Of Neonate And Adult Rats Administered A Bbb Disrupting Spider Venom.

    No full text
    Two astrocyte markers, the glial water channel aquaporin-4 (AQP4) and the glial fibrillary acidic protein (GFAP), have been implicated in several physiological and pathological conditions in the central nervous system (CNS) as well as in blood-brain barrier breakdown (BBBb). By color segmentation the immunoreactivity of both proteins, we demonstrate that the expression of AQP4 and GFAP was increased in the cerebellum of neonate (14-day-old, P14) and adult (8-week-old) rats administered Phoneutria nigriventer spider venom (PNV) known to cause perivascular edema, BBBb and convulsion. In the cerebellum's gray matter, PNV produced a major response, especially in the granular layer. Parallel increases in AQP4 and GFAP expression occurred 24 h after envenomation in the white matter of P14 and in the molecular layer of adults, as well as in the granular layer 2 h after envenomation. In the Purkinje layer there was a tendency of increased AQP4, for both, neonates (5 h), and adults (2 and 24 h). Moreover, PNV also provoked nonparallel upregulation of both markers with prevalence of upregulation of AQP 4 for P14 rats, and GFAP for adults. The major expression of both proteins was in the gray matter. The data indicates a venom effect in water/electrolyte balance in the cerebellum and the participation of AQP4 in these effects. Age-related and time-related regional differences probably reflect specificity in AQP4 distribution in different astrocytic membrane domains as well as its participation in K(+) buffering and neural activity. This study is the first to associate astrocytic AQP4 expression and reactive gliosis in a model of BBB permeability promoted by P. nigriventer venom. Our data provide compelling evidence that AQP4 expression was increased in the cerebellum of rats administered PNV.6637-4
    corecore