5,064 research outputs found
The ROSAT Deep Cluster Survey: the X-ray Luminosity Function out to z=0.8
We present the X-ray Luminosity Function (XLF) of the ROSAT Deep Cluster
Survey (RDCS) sample over the redshift range 0.05-0.8. Our results are derived
from a complete flux-limited subsample of 70 galaxy clusters, representing the
brightest half of the total sample, which have been spectroscopically
identified down to the flux limit of 4*10^{-14} erg/cm^2/s (0.5-2.0 keV) and
have been selected via a serendipitous search in ROSAT-PSPC pointed
observations. The redshift baseline is large enough that evolutionary effects
can be studied within the sample. The local XLF (z < 0.25) is found to be in
excellent agreement with previous determinations using the ROSAT All-Sky Survey
data. The XLF at higher redshifts, when combined with the deepest number counts
constructed to date (f>2*10^{-14} arg/cm^2/s), reveal no significant evolution
at least out to z=0.8, over a luminosity range 2*10^{42}-3*10^{44} erg/s in the
[0.5-2 keV] band. These findings extend the study of cluster evolution to the
highest redshifts and the faintest fluxes probed so far in X-ray surveys. They
complement and do not necessarily conflict with those of the Einstein Extended
Medium Sensitivity Survey, leaving the possibility of negative evolution of the
brightest end of the XLF at high redshifts.Comment: 12 pages, 4 figures, LaTeX (aasms4.sty). To appear in ApJ Letter
Flight elements: Fault detection and fault management
Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system
Quantum critical origin of the superconducting dome in SrTiO
We investigate the origin of superconductivity in doped SrTiO (STO) using
a combination of density functional and strong coupling theories within the
framework of quantum criticality. Our density functional calculations of the
ferroelectric soft mode frequency as a function of doping reveal a crossover
from quantum paraelectric to ferroelectric behavior at a doping level
coincident with the experimentally observed top of the superconducting dome.
Based on this finding, we explore a model in which the superconductivity in STO
is enabled by its proximity to the ferroelectric quantum critical point and the
soft mode fluctuations provide the pairing interaction on introduction of
carriers. Within our model, the low doping limit of the superconducting dome is
explained by the emergence of the Fermi surface, and the high doping limit by
departure from the quantum critical regime. We predict that the highest
critical temperature will increase and shift to lower carrier doping with
increasing O isotope substitution, a scenario that is experimentally
verifiable.Comment: 4 pages + supplemental, 3 + 2 figure
Barriers & facilitators to extended working life : a focus on a predominately female ageing workforce
Many countries are reforming their pension systems so people stay in work for longer
to improve the long-term sustainability of public finances to support an increasing older
population. This research aimed to explore the factors that enable or inhibit people to extend
working life (EWL) in a large UK based retail organisation. Semi-structured interviews were
carried out with a purposive sample (n=30): 15 employees aged ≥ 60 and 15 supervisors
supporting these employees. Older workers were predominately female, reflecting the gender
profile of the older workers in the organisation. Older workers and supervisors reported that
key facilitators to EWL were: good health, the perception that older workers are of value;
flexibility and choice; the need for an ongoing conversation across the life-course; the social
and community aspect of work as a facilitator to EWL; and, the financial necessity to EWL.
Perceived barriers to EWL included poor health, negative impacts of work on health, and a
lack of respect and support
Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium
We present detailed comparisons of the intracluster medium (ICM) in
cosmological Eulerian cluster simulations with deep Chandra observations of
nearby relaxed clusters. To assess the impact of galaxy formation, we compare
two sets of simulations, one performed in the non-radiative regime and another
with radiative cooling and several physical processes critical to various
aspects of galaxy formation: star formation, metal enrichment and stellar
feedback. We show that the observed ICM properties outside cluster cores are
well-reproduced in the simulations that include cooling and star formation,
while the non-radiative simulations predict an overall shape of the ICM
profiles inconsistent with observations. In particular, we find that the ICM
entropy in our runs with cooling is enhanced to the observed levels at radii as
large as half of the virial radius. We also find that outside cluster cores
entropy scaling with the mean ICM temperature in both simulations and Chandra
observations is consistent with being self-similar within current error bars.
We find that the pressure profiles of simulated clusters are also close to
self-similar and exhibit little cluster-to-cluster scatter. The X-ray
observable-total mass relations for our simulated sample agree with the Chandra
measurements to \~10%-20% in normalization. We show that this systematic
difference could be caused by the subsonic gas motions, unaccounted for in
X-ray hydrostatic mass estimates. The much improved agreement of simulations
and observations in the ICM profiles and scaling relations is encouraging and
the existence of tight relations of X-ray observables, such as Yx, and total
cluster mass and the simple redshift evolution of these relations hold promise
for the use of clusters as cosmological probes.Comment: 14 pages, 6 figures. Matches version accepted to Ap
Discovery of the Central Excess Brightness in Hard X-rays in the Cluster of Galaxies Abell 1795
Using the X-ray data from \ASCA, spectral and spatial properties of the
intra-cluster medium (ICM) of the cD cluster Abell 1795 are studied, up to a
radial distance of ( kpc). The ICM
temperature and abundance are spatially rather constant, although the cool
emission component is reconfirmed in the central region. The azimuthally-
averaged radial X-ray surface brightness profiles are very similar between soft
(0.7--3 keV) and hard (3--10 keV) energy bands, and neither can be fitted with
a single- model due to a strong data excess within of the
cluster center. In contrast, double- models can successfully reproduce
the overall brightness profiles both in the soft and hard energy bands, as well
as that derived with the \ROSAT PSPC. Properties of the central excess
brightness are very similar over the 0.2--10 keV energy range spanned by \ROSAT
and \ASCA. Thus, the excess X-ray emission from the core region of this cluster
is confirmed for the first time in hard X-rays above 3 keV. This indicates that
the shape of the gravitational potential becomes deeper than the King-type one
towards the cluster center. Radial profiles of the total gravitating matter,
calculated using the double- model, reveal an excess mass of within kpc of the cluster
center. This suggests a hierarchy in the gravitational potential corresponding
to the cD galaxy and the entire cluster.Comment: 27 pages, 8 figures; to appear ApJ 500 (June 20, 1998
Discovery of a Large-scale Wall in the Direction of Abell 22
We report on the discovery of a large-scale wall in the direction of Abell
22. Using photometric and spectroscopic data from the Las Campanas Observatory
and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to
exhibit a highly unusual and striking redshift distribution. We show that Abell
22 exhibits a foreground wall-like structure by examining the galaxy
distributions in both redshift space and on the colour-magnitude plane. A
search for other galaxies and clusters in the nearby region using the 2dF
Galaxy Redshift Survey database suggests that the wall-like structure is a
significant large-scale, non-virialized filament which runs between two other
Abell clusters either side of Abell 22. The filament stretches over at least
>40 Mpc in length and 10 Mpc in width at the redshift of Abell 22.Comment: 6 pages, 4 figures, accepted for publication in MNRAS letter
Galaxy Cluster Shapes and Systematic Errors in H0 Measured by the Sunyaev-Zel'dovich Effect
Imaging of the Sunyaev-Zel'dovich (SZ) effect in galaxy clusters combined
with cluster plasma x-ray diagnostics can measure the cosmic distance scale to
high redshift. Projecting the inverse-Compton scattering and x-ray emission
along the cluster line-of-sight introduces systematic errors in the Hubble
constant, H0, because the true shape of the cluster is not known. I present a
study of the systematic errors in the value of H0, as determined by the x-ray
and SZ properties of theoretical samples of triaxial isothermal ``beta'' model
clusters, caused by projection effects and observer orientation. I calculate
estimates for H0 for each cluster based on their large and small apparent
angular core radii and their arithmetic mean. I demonstrate that the estimates
for H0 for a sample of 25 clusters have 99.7% confidence intervals for the mean
estimated H0 analyzing the clusters using either their large or mean angular
core radius are within 14% of the ``true'' (assumed) value of H0 (and enclose
it), for a triaxial beta model cluster sample possessing a distribution of
apparent x-ray cluster ellipticities consistent with that of observed x-ray
clusters. This limit on the systematic error in H0 caused by cluster shape
assumes that each sample beta model cluster has fixed shape; deviations from
constant shape within the clusters may introduce additional uncertainty or bias
into this result.Comment: Accepted for publication in the Astrophysical Journal, 24 March 1998;
4 pages, 2 figure
The Beta Problem: A Study of Abell 262
We present an investigation of the dynamical state of the cluster A262.
Existing optical line of sight velocities for select cluster galaxies have been
augmented by new data obtained with the Automated Multi-Object Spectrograph at
Lick Observatory. We find evidence for a virialized early-type population
distinct from a late-type population infalling from the Pisces-Perseus
supercluster ridge. We also report on a tertiary population of low luminosity
galaxies whose velocity dispersion distinguishes them from both the early and
late-type galaxies. We supplement our investigation with an analysis of
archival X-ray data. A temperature is determined using ASCA GIS data and a gas
profile is derived from ROSAT HRI data. The increased statistics of our sample
results in a picture of A262 with significant differences from earlier work. A
previously proposed solution to the "beta-problem" in A262 in which the gas
temperature is significantly higher than the galaxy temperature is shown to
result from using too low a velocity dispersion for the early-type galaxies.
Our data present a consistent picture of A262 in which there is no
"beta-problem", and the gas and galaxy temperature are roughly comparable.
There is no longer any requirement for extensive galaxy-gas feedback to
drastically overheat the gas with respect to the galaxies. We also demonstrate
that entropy-floor models can explain the recent discovery that the beta values
determined by cluster gas and the cluster core radii are correlated.Comment: 31 pages, 14 figures, AAS LaTeX v5.0, Encapsulated Postscript
figures, to be published in The Astrophysical Journa
- …
