5,064 research outputs found

    The ROSAT Deep Cluster Survey: the X-ray Luminosity Function out to z=0.8

    Get PDF
    We present the X-ray Luminosity Function (XLF) of the ROSAT Deep Cluster Survey (RDCS) sample over the redshift range 0.05-0.8. Our results are derived from a complete flux-limited subsample of 70 galaxy clusters, representing the brightest half of the total sample, which have been spectroscopically identified down to the flux limit of 4*10^{-14} erg/cm^2/s (0.5-2.0 keV) and have been selected via a serendipitous search in ROSAT-PSPC pointed observations. The redshift baseline is large enough that evolutionary effects can be studied within the sample. The local XLF (z < 0.25) is found to be in excellent agreement with previous determinations using the ROSAT All-Sky Survey data. The XLF at higher redshifts, when combined with the deepest number counts constructed to date (f>2*10^{-14} arg/cm^2/s), reveal no significant evolution at least out to z=0.8, over a luminosity range 2*10^{42}-3*10^{44} erg/s in the [0.5-2 keV] band. These findings extend the study of cluster evolution to the highest redshifts and the faintest fluxes probed so far in X-ray surveys. They complement and do not necessarily conflict with those of the Einstein Extended Medium Sensitivity Survey, leaving the possibility of negative evolution of the brightest end of the XLF at high redshifts.Comment: 12 pages, 4 figures, LaTeX (aasms4.sty). To appear in ApJ Letter

    Flight elements: Fault detection and fault management

    Get PDF
    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system

    Quantum critical origin of the superconducting dome in SrTiO3_3

    Get PDF
    We investigate the origin of superconductivity in doped SrTiO3_3 (STO) using a combination of density functional and strong coupling theories within the framework of quantum criticality. Our density functional calculations of the ferroelectric soft mode frequency as a function of doping reveal a crossover from quantum paraelectric to ferroelectric behavior at a doping level coincident with the experimentally observed top of the superconducting dome. Based on this finding, we explore a model in which the superconductivity in STO is enabled by its proximity to the ferroelectric quantum critical point and the soft mode fluctuations provide the pairing interaction on introduction of carriers. Within our model, the low doping limit of the superconducting dome is explained by the emergence of the Fermi surface, and the high doping limit by departure from the quantum critical regime. We predict that the highest critical temperature will increase and shift to lower carrier doping with increasing 18^{18}O isotope substitution, a scenario that is experimentally verifiable.Comment: 4 pages + supplemental, 3 + 2 figure

    Barriers & facilitators to extended working life : a focus on a predominately female ageing workforce

    Get PDF
    Many countries are reforming their pension systems so people stay in work for longer to improve the long-term sustainability of public finances to support an increasing older population. This research aimed to explore the factors that enable or inhibit people to extend working life (EWL) in a large UK based retail organisation. Semi-structured interviews were carried out with a purposive sample (n=30): 15 employees aged ≥ 60 and 15 supervisors supporting these employees. Older workers were predominately female, reflecting the gender profile of the older workers in the organisation. Older workers and supervisors reported that key facilitators to EWL were: good health, the perception that older workers are of value; flexibility and choice; the need for an ongoing conversation across the life-course; the social and community aspect of work as a facilitator to EWL; and, the financial necessity to EWL. Perceived barriers to EWL included poor health, negative impacts of work on health, and a lack of respect and support

    Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium

    Get PDF
    We present detailed comparisons of the intracluster medium (ICM) in cosmological Eulerian cluster simulations with deep Chandra observations of nearby relaxed clusters. To assess the impact of galaxy formation, we compare two sets of simulations, one performed in the non-radiative regime and another with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment and stellar feedback. We show that the observed ICM properties outside cluster cores are well-reproduced in the simulations that include cooling and star formation, while the non-radiative simulations predict an overall shape of the ICM profiles inconsistent with observations. In particular, we find that the ICM entropy in our runs with cooling is enhanced to the observed levels at radii as large as half of the virial radius. We also find that outside cluster cores entropy scaling with the mean ICM temperature in both simulations and Chandra observations is consistent with being self-similar within current error bars. We find that the pressure profiles of simulated clusters are also close to self-similar and exhibit little cluster-to-cluster scatter. The X-ray observable-total mass relations for our simulated sample agree with the Chandra measurements to \~10%-20% in normalization. We show that this systematic difference could be caused by the subsonic gas motions, unaccounted for in X-ray hydrostatic mass estimates. The much improved agreement of simulations and observations in the ICM profiles and scaling relations is encouraging and the existence of tight relations of X-ray observables, such as Yx, and total cluster mass and the simple redshift evolution of these relations hold promise for the use of clusters as cosmological probes.Comment: 14 pages, 6 figures. Matches version accepted to Ap

    Discovery of the Central Excess Brightness in Hard X-rays in the Cluster of Galaxies Abell 1795

    Get PDF
    Using the X-ray data from \ASCA, spectral and spatial properties of the intra-cluster medium (ICM) of the cD cluster Abell 1795 are studied, up to a radial distance of 12\sim 12' (1.3\sim 1.3 h501h_{50}^{-1} kpc). The ICM temperature and abundance are spatially rather constant, although the cool emission component is reconfirmed in the central region. The azimuthally- averaged radial X-ray surface brightness profiles are very similar between soft (0.7--3 keV) and hard (3--10 keV) energy bands, and neither can be fitted with a single-β\beta model due to a strong data excess within 5\sim5' of the cluster center. In contrast, double-β\beta models can successfully reproduce the overall brightness profiles both in the soft and hard energy bands, as well as that derived with the \ROSAT PSPC. Properties of the central excess brightness are very similar over the 0.2--10 keV energy range spanned by \ROSAT and \ASCA. Thus, the excess X-ray emission from the core region of this cluster is confirmed for the first time in hard X-rays above 3 keV. This indicates that the shape of the gravitational potential becomes deeper than the King-type one towards the cluster center. Radial profiles of the total gravitating matter, calculated using the double-β\beta model, reveal an excess mass of 3×1013 M\sim 3 \times 10^{13}~ M_{\odot} within 150h501\sim 150 h^{-1}_{50} kpc of the cluster center. This suggests a hierarchy in the gravitational potential corresponding to the cD galaxy and the entire cluster.Comment: 27 pages, 8 figures; to appear ApJ 500 (June 20, 1998

    Discovery of a Large-scale Wall in the Direction of Abell 22

    Full text link
    We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show that Abell 22 exhibits a foreground wall-like structure by examining the galaxy distributions in both redshift space and on the colour-magnitude plane. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey database suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least >40 Mpc in length and 10 Mpc in width at the redshift of Abell 22.Comment: 6 pages, 4 figures, accepted for publication in MNRAS letter

    Galaxy Cluster Shapes and Systematic Errors in H0 Measured by the Sunyaev-Zel'dovich Effect

    Get PDF
    Imaging of the Sunyaev-Zel'dovich (SZ) effect in galaxy clusters combined with cluster plasma x-ray diagnostics can measure the cosmic distance scale to high redshift. Projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight introduces systematic errors in the Hubble constant, H0, because the true shape of the cluster is not known. I present a study of the systematic errors in the value of H0, as determined by the x-ray and SZ properties of theoretical samples of triaxial isothermal ``beta'' model clusters, caused by projection effects and observer orientation. I calculate estimates for H0 for each cluster based on their large and small apparent angular core radii and their arithmetic mean. I demonstrate that the estimates for H0 for a sample of 25 clusters have 99.7% confidence intervals for the mean estimated H0 analyzing the clusters using either their large or mean angular core radius are within 14% of the ``true'' (assumed) value of H0 (and enclose it), for a triaxial beta model cluster sample possessing a distribution of apparent x-ray cluster ellipticities consistent with that of observed x-ray clusters. This limit on the systematic error in H0 caused by cluster shape assumes that each sample beta model cluster has fixed shape; deviations from constant shape within the clusters may introduce additional uncertainty or bias into this result.Comment: Accepted for publication in the Astrophysical Journal, 24 March 1998; 4 pages, 2 figure

    The Beta Problem: A Study of Abell 262

    Full text link
    We present an investigation of the dynamical state of the cluster A262. Existing optical line of sight velocities for select cluster galaxies have been augmented by new data obtained with the Automated Multi-Object Spectrograph at Lick Observatory. We find evidence for a virialized early-type population distinct from a late-type population infalling from the Pisces-Perseus supercluster ridge. We also report on a tertiary population of low luminosity galaxies whose velocity dispersion distinguishes them from both the early and late-type galaxies. We supplement our investigation with an analysis of archival X-ray data. A temperature is determined using ASCA GIS data and a gas profile is derived from ROSAT HRI data. The increased statistics of our sample results in a picture of A262 with significant differences from earlier work. A previously proposed solution to the "beta-problem" in A262 in which the gas temperature is significantly higher than the galaxy temperature is shown to result from using too low a velocity dispersion for the early-type galaxies. Our data present a consistent picture of A262 in which there is no "beta-problem", and the gas and galaxy temperature are roughly comparable. There is no longer any requirement for extensive galaxy-gas feedback to drastically overheat the gas with respect to the galaxies. We also demonstrate that entropy-floor models can explain the recent discovery that the beta values determined by cluster gas and the cluster core radii are correlated.Comment: 31 pages, 14 figures, AAS LaTeX v5.0, Encapsulated Postscript figures, to be published in The Astrophysical Journa
    corecore