We present an investigation of the dynamical state of the cluster A262.
Existing optical line of sight velocities for select cluster galaxies have been
augmented by new data obtained with the Automated Multi-Object Spectrograph at
Lick Observatory. We find evidence for a virialized early-type population
distinct from a late-type population infalling from the Pisces-Perseus
supercluster ridge. We also report on a tertiary population of low luminosity
galaxies whose velocity dispersion distinguishes them from both the early and
late-type galaxies. We supplement our investigation with an analysis of
archival X-ray data. A temperature is determined using ASCA GIS data and a gas
profile is derived from ROSAT HRI data. The increased statistics of our sample
results in a picture of A262 with significant differences from earlier work. A
previously proposed solution to the "beta-problem" in A262 in which the gas
temperature is significantly higher than the galaxy temperature is shown to
result from using too low a velocity dispersion for the early-type galaxies.
Our data present a consistent picture of A262 in which there is no
"beta-problem", and the gas and galaxy temperature are roughly comparable.
There is no longer any requirement for extensive galaxy-gas feedback to
drastically overheat the gas with respect to the galaxies. We also demonstrate
that entropy-floor models can explain the recent discovery that the beta values
determined by cluster gas and the cluster core radii are correlated.Comment: 31 pages, 14 figures, AAS LaTeX v5.0, Encapsulated Postscript
figures, to be published in The Astrophysical Journa