4 research outputs found

    Increased activation of the pregenual anterior cingulate cortex to citalopram challenge in migraine: an fMRI study

    Get PDF
    Background The anterior cingulate cortex (ACC) is a key structure of the pain processing network. Several structural and functional alterations of this brain area have been found in migraine. In addition, altered serotonergic neurotransmission has been repeatedly implicated in the pathophysiology of migraine, although the exact mechanism is not known. Thus, our aim was to investigate the relationship between acute increase of brain serotonin (5-HT) level and the activation changes of the ACC using pharmacological challenge MRI (phMRI) in migraine patients and healthy controls. Methods Twenty-seven pain-free healthy controls and six migraine without aura patients participated in the study. All participant attended to two phMRI sessions during which intravenous citalopram, a selective serotonin reuptake inhibitor (SSRI), or placebo (normal saline) was administered. We used region of interest analysis of ACC to compere the citalopram evoked activation changes of this area between patients and healthy participants. Results Significant difference in ACC activation was found between control and patient groups in the right pregenual ACC (pgACC) during and after citalopram infusion compared to placebo. The extracted time-series showed that pgACC activation increased in migraine patients compared to controls, especially in the first 8-10 min of citalopram infusion. Conclusions Our results demonstrate that a small increase in 5-HT levels can lead to increased phMRI signal in the pregenual part of the ACC that is involved in processing emotional aspects of pain. This increased sensitivity of the pgACC to increased 5-HT in migraine may contribute to recurring headache attacks and increased stress-sensitivity in migraine

    Spontaneous migraine attack causes alterations in default mode network connectivity

    Get PDF
    BACKGROUND: Although migraine is one of the most investigated neurologic disorders, we do not have a perfect neuroimaging biomarker for its pathophysiology. One option to improve our knowledge is to study resting-state functional connectivity in and out of headache pain. However, our understanding of the functional connectivity changes during spontaneous migraine attack is partial and incomplete. CASE PRESENTATION: Using resting-state functional magnetic resonance imaging we assessed a 24-year old woman affected by migraine without aura at two different times: during a spontaneous migraine attack and in interictal phase. Seed-to-voxel whole brain analysis was carried out using the posterior cingulate cortex as a seed, representing the default mode network (DMN). Our results showed decreased intrinsic connectivity within core regions of the DMN with an exception of a subsystem including the dorsal medial and superior frontal gyri, and the mid-temporal gyrus which is responsible for pain interpretation and control. In addition, increased connectivity between the DMN and pain and specific migraine-related areas, such as the pons and hypothalamus, developed during the spontaneous migraine attack. CONCLUSION: Our preliminary results provide further support for the hypothesis that alterations of the DMN functional connectivity during migraine headache may lead to maladaptive top-down modulation of migraine pain-related areas which might be a specific biomarker for migraine

    Spatiotemporal brain activation pattern following acute citalopram challenge is dose dependent and associated with neuroticism

    Get PDF
    The initial effects of selective serotonin reuptake inhibitors (SSRIs) in the human living brain are poorly understood. We carried out a 3T resting state fMRI study with pharmacological challenge to determine the brain activation changes over time following different dosages of citalopram.During the study, 7.5 mg i.v. citalopram was administered to 32 healthy subjects. In addition, 11.25 mg citalopram was administered to a subset of 9 subjects to investigate the dose-response. Associations with neuroticism (assessed by the NEO PI-R) of the emerging brain activation to citalopram was also investigated.Citalopram challenge evoked significant activation in brain regions that are part of the default mode network, the visual network and the sensorimotor network, extending to the thalamus, and midbrain. Most effects appeared to be dose-dependent and this was statistically significant in the middle cingulate gyrus. Individual citalopram-induced brain responses were positively correlated with neuroticism scores and its subscales in specific brain areas; anxiety subscale scores in thalamus and midbrain and self-consciousness scores in middle cingulate gyrus. There were no sex differences.We investigated only healthy subjects and we used a relatively low sample size in the 11.25 mg citalopram analysis.Our results suggest that SSRIs acutely induce an increased arousal-like state of distributed cortical and subcortical systems that is mediated by enhanced serotonin neurotransmission according to levels of neuroticism and underpins trait sensitivity to environmental stimuli and stressors. Studies in depression are needed to determine how therapeutic effects eventually emerge

    Anticipation and violated expectation of pain are influenced by trait rumination

    Get PDF
    Rumination - as a stable tendency to focus repetitively on feelings related to distress - represents a transdiagnostic risk factor. Theories suggest altered emotional information processing as the key mechanism of rumination. However, studies on the anticipation processes in relation to rumination are scarce, even though expectation in this process is demonstrated to influence the processing of emotional stimuli. In addition, no published study has investigated violated expectation in relation to rumination yet. In the present study we examined the neural correlates of pain anticipation and perception using a fear conditioning paradigm with pain as the unconditioned stimulus in healthy subjects (N = 30). Rumination was assessed with the 10-item Ruminative Response Scale (RRS). Widespread brain activation - extending to temporal, parietal, and occipital lobes along with activation in the cingulate cortex, insula, and putamen - showed a positive correlation with rumination, supporting our hypothesis that trait rumination influences anticipatory processes. Interestingly, with violated expectation (when an unexpected, non-painful stimulus follows a pain cue compared to when an expected, painful stimulus follows the same pain cue) a negative association between rumination and activation was found in the posterior cingulate cortex, which is responsible for change detection in the environment and subsequent behavioral modification. Our results suggest that rumination is associated with increased neural response to pain perception and pain anticipation, and may deteriorate the identification of an unexpected omission of aversive stimuli. Therefore, targeting rumination in cognitive behavioral therapy of chronic pain could have a beneficial effect
    corecore