8,644 research outputs found

    Exploring the Limitations of Behavior Cloning for Autonomous Driving

    Get PDF
    Driving requires reacting to a wide variety of complex environment conditions and agent behaviors. Explicitly modeling each possible scenario is unrealistic. In contrast, imitation learning can, in theory, leverage data from large fleets of human-driven cars. Behavior cloning in particular has been successfully used to learn simple visuomotor policies end-to-end, but scaling to the full spectrum of driving behaviors remains an unsolved problem. In this paper, we propose a new benchmark to experimentally investigate the scalability and limitations of behavior cloning. We show that behavior cloning leads to state-of-the-art results, including in unseen environments, executing complex lateral and longitudinal maneuvers without these reactions being explicitly programmed. However, we confirm well-known limitations (due to dataset bias and overfitting), new generalization issues (due to dynamic objects and the lack of a causal model), and training instability requiring further research before behavior cloning can graduate to real-world driving. The code of the studied behavior cloning approaches can be found at https://github.com/felipecode/coiltraine

    Correlated band structure of NiO, CoO and MnO by variational cluster approximation

    Full text link
    The variational cluster approximation proposed by Potthoff is applied to the calculation of the single-particle spectral function of the transition metal oxides MnO, CoO and NiO. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a TMO6-cluster. The single-particle parameters of this cluster serve as variational parameters to construct a stationary point of the grand potential of the lattice system. The stationary point is found by a crossover procedure which allows to go continuously from an array of disconnected clusters to the lattice system. The self-energy is found to contain irrelevant degrees of freedom which have marginal impact on the grand potential and which need to be excluded to obtain meaningful results. The obtained spectral functions are in good agreement with experimental data.Comment: 14 pages, 17 figure

    Spin state transition in LaCoO3 by variational cluster approximation

    Full text link
    The variational cluster approximation is applied to the calculation of thermodynamical quantities and single-particle spectra of LaCoO3. Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase of the occupation of high-spin Co3+ ions causes the temperature dependence of entropy and magnetic susceptibility. The single particle spectral function agrees well with experiment, the experimentally observed temperature dependence of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies with experiment highlight the importance of spin orbit coupling and local lattice relaxation.Comment: Revtex file with 10 eps figure
    corecore