85 research outputs found

    A novel application of motion analysis for detecting stress responses in embryos at different stages of development.

    Get PDF
    Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM

    Combining motion analysis and microfluidics--a novel approach for detecting whole-animal responses to test substances.

    Get PDF
    Small, early life stages, such as zebrafish embryos are increasingly used to assess the biological effects of chemical compounds in vivo. However, behavioural screens of such organisms are challenging in terms of both data collection (culture techniques, drug delivery and imaging) and data evaluation (very large data sets), restricting the use of high throughput systems compared to in vitro assays. Here, we combine the use of a microfluidic flow-through culture system, or BioWell plate, with a novel motion analysis technique, (sparse optic flow - SOF) followed by spectral analysis (discrete Fourier transformation - DFT), as a first step towards automating data extraction and analysis for such screenings. Replicate zebrafish embryos housed in a BioWell plate within a custom-built imaging system were subject to a chemical exposure (1.5% ethanol). Embryo movement was videoed before (30 min), during (60 min) and after (60 min) exposure and SOF was then used to extract data on movement (angles of rotation and angular changes to the centre of mass of embryos). DFT was subsequently used to quantify the movement patterns exhibited during these periods and Multidimensional Scaling and ANOSIM were used to test for differences. Motion analysis revealed that zebrafish had significantly altered movements during both the second half of the alcohol exposure period and also the second half of the recovery period compared to their pre-treatment movements. Manual quantification of tail flicking revealed the same differences between exposure-periods as detected using the automated approach. However, the automated approach also incorporates other movements visible in the organism such as blood flow and heart beat, and has greater power to discern environmentally-driven changes in the behaviour and physiology of organisms. We suggest that combining these technologies could provide a highly efficient, high throughput assay, for assessing whole embryo responses to various drugs and chemicals

    Surgery versus Watchful Waiting in Patients with Craniofacial Fibrous Dysplasia – a Meta-Analysis

    Get PDF
    Fibrous dysplasia (FD) is a benign bone tumor which most commonly involves the craniofacial skeleton. The most devastating consequence of craniofacial FD (CFD) is loss of vision due to optic nerve compression (ONC). Radiological evidence of ONC is common, however the management of this condition is not well established. Our objective was to compare the long-term outcome of patients with optic nerve compression (ONC) due to craniofacial fibrous dysplasia (CFD) who either underwent surgery or were managed expectantly.We performed a meta-analysis of 27 studies along with analysis of the records of a cohort of patients enrolled in National Institutes of Health (NIH) protocol 98-D-0145, entitled Screening and Natural History of Fibrous Dysplasia, with a diagnosis of CFD. The study group consisted of 241 patients; 122 were enrolled in the NIH study and 119 were extracted from cases published in the literature. The median follow-up period was 54 months (range, 6-228 months). A total of 368 optic nerves were investigated. All clinically impaired optic nerves (n = 86, 23.3%) underwent therapeutic decompression. Of the 282 clinically intact nerves, 41 (15%) were surgically decompressed and 241 (85%) were followed expectantly. Improvement in visual function was reported in fifty-eight (67.4%) of the clinically impaired nerves after surgery. In the intact nerves group, long-term stable vision was achieved in 31/45 (75.6%) of the operated nerves, compared to 229/241 (95.1%) of the non-operated ones (p = 0.0003). Surgery in asymptomatic patients was associated with visual deterioration (RR 4.89; 95% CI 2.26-10.59).Most patients with CFD will remain asymptomatic during long-term follow-up. Expectant management is recommended in asymptomatic patients even in the presence of radiological evidence of ONC

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The Claustrum of the Pig: An Immunohistochemical and a Quantitative Golgi Study

    No full text
    Despite increasing interest in the claustrum (Cl) over the last decades, its function is still a puzzling problem. Among the experimental species of potential use in Cl research, the pig is considered an interesting model, because of the similarities of its brain with the corresponding cortical and subcortical human structures. The swine Cl presents a peculiar morphology, characterized by a wide posterior enlargement, ideal for physiological investigations. There is a wealth of data on general anatomy, cytoarchitecture, and chemo architecture of the Cl, but much less is known about the dendritic morphometry of its neurons. Dendritic length and branching pattern are key features to understand the organization of the microcircuitry, and thus the delineation of the structure\u2013function relationships of the Cl. To this effect, we undertook (a) a quantitative study of the dendrites of the spiny neurons of the swine Cl, employing the Golgi staining; and (b) an immunohistochemical analysis to describe the distribution of the parvalbumin (PV)-immunoreactive interneurons throughout the same nucleus. Taken together, the results that we report here show that the dendritic architecture and the distribution of the PV expressing interneurons change when the Cl of this species changes its shape along the rostro-caudal axis, thus suggesting a potentially specific function for the large posterior puddle. Anat Rec, 2019. \ua9 2019 Wiley Periodicals, Inc
    • 

    corecore