1,343 research outputs found

    New numerical solver for flows at various Mach numbers

    Full text link
    Many problems in stellar astrophysics feature flows at low Mach numbers. Conventional compressible hydrodynamics schemes frequently used in the field have been developed for the transonic regime and exhibit excessive numerical dissipation for these flows. While schemes were proposed that solve hydrodynamics strictly in the low Mach regime and thus restrict their applicability, we aim at developing a scheme that correctly operates in a wide range of Mach numbers. Based on an analysis of the asymptotic behavior of the Euler equations in the low Mach limit we propose a novel scheme that is able to maintain a low Mach number flow setup while retaining all effects of compressibility. This is achieved by a suitable modification of the well-known Roe solver. Numerical tests demonstrate the capability of this new scheme to reproduce slow flow structures even in moderate numerical resolution. Our scheme provides a promising approach to a consistent multidimensional hydrodynamical treatment of astrophysical low Mach number problems such as convection, instabilities, and mixing in stellar evolution.Comment: 16 pages, 8 figures, accepted for publication by A&

    Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)The origin of hot subdwarf B stars (sdBs) is still unclear. About half of the known sdBs are in close binary systems for which common envelope ejection is the most likely formation channel. Little is known about this dynamic phase of binary evolution. Since most of the known sdB systems are single-lined spectroscopic binaries, it is difficult to derive masses and unravel the companions' nature, which is the aim of this paper. Due to the tidal influence of the companion in close binary systems, the rotation of the primary becomes synchronised to its orbital motion. In this case it is possible to constrain the mass of the companion, if the primary mass, its projected rotational velocity as well as its surface gravity are known. For the first time we measured the projected rotational velocities of a large sdB binary sample from high resolution spectra. We analysed a sample of 51 sdB stars in close binaries, 40 of which have known orbital parameters comprising half of all such systems known today. Synchronisation in sdB binaries is discussed both from the theoretical and the observational point of view. The masses and the nature of the unseen companions could be constrained in 31 cases. We found orbital synchronisation most likely to be established in binaries with orbital periods shorter than . Only in five cases it was impossible to decide whether the sdB's companion is a white dwarf or an M dwarf. The companions to seven sdBs could be clearly identified as late M stars. One binary may have a brown dwarf companion. The unseen companions of nine sdBs are white dwarfs with typical masses. The mass of one white dwarf companion is very low. In eight cases (including the well known system KPD1930+2752) the companion mass exceeds , four of which even exceed the Chandrasekhar limit indicating that they may be neutron stars. Even stellar mass black holes are possible for the most massive companions. The distribution of the inclinations of the systems with low mass companions appears to be consistent with expectations, whereas a lack of high inclinations becomes obvious for the massive systems. We show that the formation of such systems can be explained with common envelope evolution and present an appropriate formation channel including two phases of unstable mass transfer and one supernova explosion. The sample also contains a candidate post-RGB star, which rotates fast despite its long orbital period. The post-RGB stars are expected to spin-up caused by their ongoing contraction. The age of the sdB is another important factor. If the EHB star is too young, the synchronisation process might not be finished yet. Estimating the ages of the target stars from their positions on the EHB band, we found PG 2345+318, which is known not to be synchronised, to lie near the zero-age extreme horizontal branch as are the massive candidates PG 1232-136, PG 1432+159 and PG 1101+249. These star may possibly be too young to have reached synchronisation. The derived large fraction of putative massive sdB binary systems in low inclination orbits is inconsistent with theoretical predictions. Even if we dismiss three candidates because they may be too young and assume that the other sdB primaries are of low mass, PG 1743+477 and, in particular, HE 0532-4503 remain as candidates whose companions may have masses close to or above the Chandrasekhar limit. X-ray observations and accurate photometry are suggested to clarify their nature. As high inclination systems must also exist, an appropriate survey has already been launched to find such binaries.Peer reviewe

    Three-dimensional simulations of the interaction between Type Ia supernova ejecta and their main sequence companions

    Full text link
    The identity of the progenitor systems of SNe Ia is still uncertain. In the single-degenerate (SD) scenario, the interaction between the SN blast wave and the outer layers of a main sequence (MS) companion star strips off H-rich material which is then mixed into the ejecta. Strong contamination of the SN ejecta with stripped material could lead to a conflict with observations of SNe Ia. This constrains the SD progenitor model. In this work, our previous simulations based on simplified progenitor donor stars have been updated by adopting more realistic progenitor-system models that result from fully detailed, state-of-the-art binary evolution calculations. We use Eggleton's stellar evolution code including the optically thick accretion wind model and the possibility of the effects of accretion disk instabilities to obtain realistic models of companions for different progenitor systems. The impact of the SN blast wave on these companion stars is followed in three-dimensional hydrodynamic simulations employing the SPH code GADGET3. We find that the stripped masses range from 0.11 to 0.18 M_sun. The kick velocity is between 51 and 105 km/s. We find that the stripped mass and kick velocity depend on the ratio of the orbital separation to the radius of a companion. They can be fitted by a power law for a given companion model. However, the structure of the companion star is also important for the amount of stripped material. With more realistic companion star models than in previous studies, our simulations show that the H masses stripped from companions are inconsistent with the best observational limits (< 0.01 M_sun) derived from nebular spectra. However, a rigorous forward modeling based on impact simulations with radiation transfer is required to reliably predict observable signatures of the stripped H and to conclusively assess the viability of the considered SN Ia progenitor scenario.Comment: 14 pages, 13 figures, accepted for publication by A&

    Three-Dimensional Simulations of Massive Stars: II. Age Dependence

    Full text link
    We present 3D full star simulations, reaching up to 90% of the total stellar radius, for three 7M⊙7M_\odot stars of different ages (ZAMS, midMS and TAMS). A comparison with several theoretical prescriptions shows the generation spectra for all three ages are dominated by convective plumes. Two distinct overshooting layers are observed, with most plumes stopped within the layer situated directly above the convective boundary (CB); overshooting to the second, deeper layer becomes increasingly more infrequent with stellar age. Internal gravity wave (IGW) propagation is significantly impacted in the midMS and TAMS models as a result of some IGWs getting trapped within their Brunt-V\"{a}is\"{a}l\"{a} frequency spikes. A fundamental change in the wave structure across radius is also observed, driven by the effect of density stratification on IGW propagation causing waves to become evanescent within the radiative zone, with older stars being affected more strongly. We find that the steepness of the frequency spectrum at the surface increases from ZAMS to the older models, with older stars also showing more modes in their spectra.Comment: 24 pages, 14 figures / Accepted at Ap

    Turbulent dynamo action and its effects on the mixing at the convective boundary of an idealized oxygen-burning shell

    Full text link
    Convection is one of the most important mixing processes in stellar interiors. Hydrodynamic mass entrainment can bring fresh fuel from neighboring stable layers into a convection zone, modifying the structure and evolution of the star. Under some conditions, strong magnetic fields can be sustained by the action of a turbulent dynamo, adding another layer of complexity and possibly altering the dynamics in the convection zone and at its boundaries. In this study, we used our fully compressible Seven-League Hydro code to run detailed and highly resolved three-dimensional magnetohydrodynamic simulations of turbulent convection, dynamo amplification, and convective boundary mixing in a simplified setup whose stratification is similar to that of an oxygen-burning shell in a star with an initial mass of 25 M⊙25\ M_\odot. We find that the random stretching of magnetic field lines by fluid motions in the inertial range of the turbulent spectrum (i.e., a small-scale dynamo) naturally amplifies the seed field by several orders of magnitude in a few convective turnover timescales. During the subsequent saturated regime, the magnetic-to-kinetic energy ratio inside the convective shell reaches values as high as 0.330.33, and the average magnetic field strength is ∼1010 G{\sim}10^{10}\,\mathrm{G}. Such strong fields efficiently suppress shear instabilities, which feed the turbulent cascade of kinetic energy, on a wide range of spatial scales. The resulting convective flows are characterized by thread-like structures that extend over a large fraction of the convective shell. The reduced flow speeds and the presence of magnetic fields with strengths up to 60%60\% of the equipartition value at the upper convective boundary diminish the rate of mass entrainment from the stable layer by ≈ 20%{\approx}\,20\% as compared to the purely hydrodynamic case

    Hot subdwarf binaries - Masses and nature of their heavy compact companions

    Full text link
    Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 32 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models, at least 5% of the observed subdwarfs must have very massive companions: unusually heavy white dwarfs, neutron stars and, in some cases, even black holes. We present evolutionary models which show that such binaries can indeed form if the system has evolved through two common-envelope phases. This new connection between hot subdwarfs, which are numerous in the Galaxy, and massive compact objects may lead to a tremendous increase in the number of known neutron stars and black holes and shed some light on this dark population and its evolutionary link to the X-ray binary population.Comment: 8 pages, 5 figures, to appear in the Journal of Physics Conference Proceedings (JPCS) for the 16th European White Dwarf Workshop, Barcelona, Spain, June 30 - July 11, 200
    • …
    corecore