29 research outputs found

    Haasteena allergeenivalmisteiden laatu

    Get PDF

    Component-resolved diagnosis in selecting patients for yellowjacket venom immunotherapy

    Get PDF
    Background: Venom immunotherapy is effective in preventing systemic allergic reactions (SARs), but the diagnosis of venom allergy is problematic. Objective: To compare the performance of component-resolved diagnosis and conventional tests in patients referred for venom immunotherapy. Methods: We measured serum-specific immunoglobulin E to yellowjacket and honeybee venoms (Ves v 1 and Ves v 5 and Api m 1), cross-reactive carbohydrate determinants, serum basal tryptase (ImmunoCAP, ThermoFisher Scientific, Uppsala, Sweden), and skin prick test reactions in 84 patients referred to receive venom immunotherapy. History of SAR and its severity were evaluated. Results: Of the 78 patients with suspected yellowjacket venom (YJV) allergy, a history of SAR was confirmed in 47 (60%) and 31 (40%) had a non-SAR reaction. The most accurate tests to confirm venom allergy after a SAR were serum-specific immunoglobulin E to yellowjacket whole-venom extract spiked with Ves v 5 (area under the curve 0.87, 95% confidence interval 0.77-0.97, P <.001) and Ves v 5 (area under the curve 0.86, 95% confidence interval 0.76-0.96, P <.001). Sensitization to Ves v 1 was infrequent and its area under the curve was low (0.62, 95% confidence interval 0.47-0.76, P = .106). Sensitivity of the YJV skin prick test was 86%, but its specificity was low at 54%. Double sensitization to yellowjacket and honeybee occurred frequently in skin prick tests. Of the patients without a SAR, 26% showed a positive reaction to YJV in any serum test and 46% showed a positive reaction in skin tests. Conclusion: Specific immunoglobulin E to the YJV spiked with Ves v 5 confirmed the allergy after a SAR. A history of SAR should be confirmed before testing, because venom sensitization is frequent in other types of reactions. (C) 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.Peer reviewe

    Folate-Targeted Polymeric Nanoparticle Formulation of Docetaxel Is an Effective Molecularly Targeted Radiosensitizer with Efficacy Dependent on the Timing of Radiotherapy

    Get PDF
    Nanoparticle (NP) chemotherapeutics hold great potential as radiosensitizers. Their unique properties, such as preferential accumulation in tumors and their ability to target tumors through molecular targeting ligands, are ideally suited for radiosensitization. We aimed to develop a molecularly targeted nanoparticle formulation of docetaxel (Dtxl) and evaluate its property as a radiosensitizer. Using a biodegradable and biocompatible lipid-polymer NP platform and folate as a molecular targeting ligand, we engineered a folate-targeted nanoparticle (FT-NP) formulation of Dtxl. These NPs have sizes of 72±4 nm and surface charges of −42±8 mV. Using folate receptor over-expressing KB cells and folate receptor low HTB-43 cells, we showed folate-mediated intracellular uptake of NPs. In vitro radiosensitization studies initially showed FT-NP is less effective than Dtxl as a radiosensitizer. However, the radiosensitization efficacy is dependent on the timing of radiotherapy. In vitro radiosensitization conducted with irradiation given at the optimal time (24 hours) showed FT-NP Dtxl is as effective as Dtxl. When FT-NP Dtxl is compared to Dtxl and non-targeted nanoparticle (NT-NP) Dtxl in vivo, FT-NP was found to be significantly more effective than Dtxl or NT-NP Dtxl as a radiosensitizer. We also confirmed that radiosensitization is dependent on timing of irradiation in vivo. In summary, FT-NP Dtxl is an effective radiosensitizer in folate-receptor over-expressing tumor cells. Time of irradiation is critical in achieving maximal efficacy with this nanoparticle platform. To the best of our knowledge, our report is the first to demonstrate the potential of molecularly targeted NPs as a promising new class of radiosensitizers

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF

    In Vitro Adhesion Specificity of Indigenous Lactobacilli within the Avian Intestinal Tract

    No full text
    In vitro adherence of Lactobacillus strains to cell and tissue types along the chicken alimentary tract and to ileal mucus were determined. Fresh isolates from chickens adhered to the epithelium of crop and, in a strain-dependent manner, to follicle-associated epithelium and the apical surfaces of mature enterocytes of intestinal villi. No adherence to the apical surfaces of undifferentiated enterocytes, the mucus-producing goblet cells, or the ileal mucus was detected
    corecore