163 research outputs found

    Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A reliable quenching and metabolite extraction method has been developed for <it>Lactobacillus plantarum</it>. The energy charge value was used as a critical indicator for fixation of metabolism.</p> <p>Results</p> <p>Four different aqueous quenching solutions, all containing 60% of methanol, were compared for their efficiency. Only the solutions containing either 70 mM HEPES or 0.85% (w/v) ammonium carbonate (pH 5.5) caused less than 10% cell leakage and the energy charge of the quenched cells was high, indicating rapid inactivation of the metabolism.</p> <p>The efficiency of extraction of intracellular metabolites from cell cultures depends on the extraction methods, and is expected to vary between micro-organisms. For <it>L. plantarum</it>, we have compared five different extraction methodologies based on (i) cold methanol, (ii) perchloric acid, (iii) boiling ethanol, (iv) chloroform/methanol (1:1) and (v) chloroform/water (1:1). Quantification of representative intracellular metabolites showed that the best extraction efficiencies were achieved with cold methanol, boiling ethanol and perchloric acid.</p> <p>Conclusion</p> <p>The ammonium carbonate solution was selected as the most suitable quenching buffer for metabolomics studies in <it>L. plantarum </it>because (i) leakage is minimal, (ii) the energy charge indicates good fixation of metabolism, and (iii) all components are easily removed during freeze-drying. A modified procedure based on cold methanol extraction combined good extractability with mild extraction conditions and high enzymatic inactivation. These features make the combination of these quenching and extraction protocols very suitable for metabolomics studies with <it>L. plantarum</it>.</p

    Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications

    Get PDF
    BACKGROUND: The nisin-controlled gene expression system NICE of Lactococcus lactis is one of the most widely used expression systems in Gram-positive bacteria. Despite its widespread use, no optimization of the culture conditions and nisin induction has been carried out to obtain maximum yields. As a model system induced production of lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus) produced by S. simulans biovar. Staphylolyticus, was used. Three main areas need optimization for maximum yields: cell density, nisin-controlled induction and protein production, and parameters specific for the target-protein. RESULTS: In a series of pH-controlled fermentations the following parameters were optimized: pH of the culture, use of NaOH or NH(4)OH as neutralizing agent, the addition of zinc and phosphate, the fermentation temperature, the time point of induction (cell density of the culture), the amount of nisin added for induction and the amount of three basic medium components, i.e. yeast extract, peptone and lactose. For each culture growth and lysostaphin production was followed. Lysostaphin production yields depended on all parameters that were varied. In the course of the optimization a three-fold increase in lysostaphin yield was achieved from 100 mg/l to 300 mg/l. CONCLUSION: Protein production with the NICE gene expression system in L. lactis strongly depends on the medium composition, the fermentation parameters and the amount of nisin added for induction. Careful optimization of key parameters lead to a significant increase in the yield of the target protein

    Resistance of Gram-positive bacteria to nisin is not determined by Lipid II levels

    Get PDF
    Lipid II is essential for nisin-mediated pore formation at nano-molar concentrations. We tested whether nisin resistance could result from different Lipid II levels, by comparing the maximal Lipid II pool in Micrococcus flavus (sensitive) and Listeria monocytogenes (relatively insensitive) and their nisin-resistant variants, with a newly developed method. No correlation was observed between the maximal Lipid II pool and nisin sensitivity, as was further corroborated by using spheroplasts of nisin-resistant and wild-type strains of M. flavus, which were equally sensitive to nisin. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved

    A general method for selection of riboflavin-overproducing food grade micro-organisms

    Get PDF
    BACKGROUND: This study describes a strategy to select and isolate spontaneous riboflavin-overproducing strains of Lactobacillus (Lb.) plantarum, Leuconostoc (Lc.) mesenteroides and Propionibacterium (P.) freudenreichii. RESULTS: The toxic riboflavin analogue roseoflavin was used to isolate natural riboflavin-overproducing variants of the food grade micro-organisms Lb. plantarum, Lc. mesenteroides and P. freudenreichii strains. The method was successfully employed for strains of all three species. The mutation(s) responsible for the observed overproduction of riboflavin were identified for isolates of two species. CONCLUSION: Selection for spontaneous roseoflavin-resistant mutants was found to be a reliable method to obtain natural riboflavin-overproducing strains of a number of species commonly used in the food industry. This study presents a convenient method for deriving riboflavin-overproducing strains of bacterial starter cultures, which are currently used in the food industry, by a non-recombinant methodology. Use of such starter strains can be exploited to increase the vitamin content in certain food products

    Tiny but mighty : bacterial membrane vesicles in food biotechnological applications

    Get PDF
    Membrane vesicle (MV) production is observed in all domains of life. Evidence of MV production accumulated in recent years among bacterial species involved in fermentation processes. These studies revealed MV composition, biological functions and properties, which made us recognize the potential of MVs in food applications as delivery vehicles of various compounds to other bacteria or the human host. Moreover, MV producing strains can deliver benefits as probiotics or starters in fermentation processes. Next to the natural production of MVs, we also highlight possible methods for artificial generation of bacterial MVs and cargo loading to enhance their applicability. We believe that a more in-depth understanding of bacterial MVs opens new avenues for their exploitation in biotechnological applications.</p

    Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin

    Get PDF
    BACKGROUND: The NIsin-Controlled gene Expression system NICE of Lactococcus lactis is one of the most widespread used expression systems of Gram-positive bacteria. It is used in more than 100 laboratories for laboratory-scale gene expression experiments. However, L. lactis is also a micro-organism with a large biotechnological potential. Therefore, the aim of this study was to test whether protein production in L. lactis using the NICE system can also effectively be performed at the industrial-scale of fermentation. RESULTS: Lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus) from S. simulans biovar. Staphylolyticus, was used as a model system. Food-grade lysostaphin expression constructs in L. lactis were grown at 1L-, 300-L and 3000-L scale and induced with nisin for lysostaphin production. The induction process was equally effective at all scales and yields of about 100 mg/L were obtained. Up-scaling was easy and required no specific effort. Furthermore, we describe a simple and effective way of downstream processing to obtain a highly purified lysostaphin, which has been used for clinical phase I trials. CONCLUSION: This is the first example that shows that nisin-regulated gene expression in L. lactis can be used at industrial scale to produce large amounts of a target protein, such as lysostaphin. Downstream processing was simple and in a few steps produced a highly purified and active enzyme
    • …
    corecore