163 research outputs found
Recommended from our members
First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA.
The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{μ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{μ}→ν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{μ}→ν[over ¯]_{μ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ
Recommended from our members
Observation of seasonal variation of atmospheric multiple-muon events in the NOvA Near Detector
Using two years of data from the NOvA Near Detector at Fermilab, we report a seasonal variation of cosmic ray induced multiple-muon (Nμ≥2) event rates which has an opposite phase to the seasonal variation in the atmospheric temperature. The strength of the seasonal multiple-muon variation is shown to increase as a function of the muon multiplicity. However, no significant dependence of the strength of the seasonal variation of the multiple-muon variation is seen as a function of the muon zenith angle, or the spatial or angular separation between the correlated muons
First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA
The NOvA experiment has seen a 4.4σ signal of ν̄e appearance in a 2 GeV ν̄μ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν̄μ→ν̄e candidates with a background of 10.3 and 102 ν̄μ→ν̄μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm322|=2.48-0.06+0.11×10-3 eV2/c4 and sin2θ23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δCP=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ23 values in the upper octant by 1.6σ
Electron scattering and neutrino physics
A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino–nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino–nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs
Deployment of Water-based Liquid Scintillator in the Accelerator Neutrino Neutron Interaction Experiment
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a 26-ton
water Cherenkov neutrino detector installed on the Booster Neutrino Beam (BNB)
at Fermilab. Its main physics goals are to perform a measurement of the neutron
yield from neutrino-nucleus interactions, as well as a measurement of the
charged-current cross section of muon neutrinos. An equally important focus is
placed on the research and development of new detector technologies and target
media. Specifically water-based liquid scintillator (WbLS) is of interest as a
novel detector medium, as it allows for the simultaneous detection of
scintillation and Cherenkov light. This paper presents the deployment of a 366L
WbLS vessel in ANNIE in March 2023 and the subsequent detection of both
Cherenkov light and scintillation from the WbLS. This proof-of-concept allows
for the future development of reconstruction and particle identification
algorithms in ANNIE, as well as dedicated analyses, such as the search for
neutral current events and the hadronic scintillation component within the WbLS
volume.Comment: 19 pages, 16 figure
Search for slow magnetic monopoles with the NOvA detector on the surface
We report a search for a magnetic monopole component of the cosmic-ray flux in a 95-day exposure
of the NOvA experiment’s Far Detector, a 14 kt segmented liquid scintillator detector designed primarily to
observe GeV-scale electron neutrinos. No events consistent with monopoles were observed, setting an
upper limit on the flux of 2 × 10−14 cm−2 s−1 sr−1 at 90% C.L. for monopole speed 6 × 10−4 < β <
5 × 10−3 and mass greater than 5 × 108 GeV. Because of NOvA’s small overburden of 3 meters-water
equivalent, this constraint covers a previously unexplored low-mass region
Measurement of the double-differential muon-neutrino charged-current inclusive cross section in the NOvA near detector
We report cross-section measurements of the final-state muon kinematics for νμ charged-current interactions in the NOvA near detector using an accumulated 8.09×1020 protons on target in the NuMI beam. We present the results as a double-differential cross section in the observed outgoing muon energy and angle, as well as single-differential cross sections in the derived neutrino energy, Eν, and square of the four-momentum transfer, Q2. We compare the results to inclusive cross-section predictions from various neutrino event generators via χ2 calculations using a covariance matrix that accounts for bin-to-bin correlations of systematic uncertainties. These comparisons show a clear discrepancy between the data and each of the tested predictions at forward muon angle and low Q2, indicating a missing suppression of the cross section in current neutrino-nucleus scattering models
Search for multimessenger signals in NOvA coincident with LIGO/Virgo detections
Using the NOvA neutrino detectors, a broad search has been performed for any signal coincident with 28 gravitational wave events detected by the LIGO/Virgo Collaboration between September 2015 and July 2019. For all of these events, NOvA is sensitive to possible arrival of neutrinos and cosmic rays of GeV and higher energies. For five (seven) events in the NOvA Far (Near) Detector, timely public alerts from the LIGO/Virgo Collaboration allowed recording of MeV-scale events. No signal candidates were found
Search for multimessenger signals in NOvA coincident with LIGO/Virgo detections
Using the NOvA neutrino detectors, a broad search has been performed for any signal coincident with 28 gravitational wave events detected by the LIGO/Virgo Collaboration between September 2015 and July 2019. For all of these events, NOvA is sensitive to possible arrival of neutrinos and cosmic rays of GeV and higher energies. For five (seven) events in the NOvA Far (Near) Detector, timely public alerts from the LIGO/Virgo Collaboration allowed recording of MeV-scale events. No signal candidates were found
- …
