117 research outputs found

    Quantum diffraction and interference of spatially correlated photon pairs generated by spontaneous parametric down-conversion

    Full text link
    We demonstrate one- and two-photon diffraction and interference experiments utilizing parametric down-converted photon pairs (biphotons) and a transmission grating. With two-photon detection, the biphoton exhibits a diffraction-interference pattern equivalent to that of an effective single particle that is associated with half the wavelength of the constituent photons. With one-photon detection, however no diffraction-interference pattern is observed. We show that these phenomena originate from the spatial quantum correlation between the down-converted photons.Comment: 4 pages, 5 figure

    Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference

    Full text link
    We demonstrate a method to determine the spectral purity of single photons. The technique is based on the Hong-Ou-Mandel (HOM) interference between a single photon state and a suitably prepared coherent field. We show that the temporal width of the HOM dip is not only related to reciprocal of the spectral width but also to the underlying quantum coherence. Therefore, by measuring the width of both the HOM dip and the spectrum one can directly quantify the degree of spectral purity. The distinct advantage of our proposal is that it obviates the need for perfect mode matching, since it does not rely on the visibility of the interference. Our method is particularly useful for characterizing the purity of heralded single photon states.Comment: Extended version, 16 pages, 9 figure

    Observation of Two-Photon Excitation for Three-Level Atoms in a Squeezed Vacuum

    Get PDF
    The two-photon transition (6S(sub 1/2) yields 6D(sub 5/2)) of atomic Cesium is investigated for excitation with squeezed vacuum generated via nondegenerate parametric down conversion. The two-photon excitation rate (R) is observed to have a non-quadratic dependence of R = aI(exp 2) + bI on the incident photon flux (I), reflecting the nonclassical correlations of the squeezed vacuum field

    Creation of maximally entangled photon-number states using optical fiber multiports

    Get PDF
    We theoretically demonstrate a method for producing the maximally path-entangled state (1/Sqrt[2]) (|N,0> + exp[iN phi] |0,N>) using intensity-symmetric multiport beamsplitters, single photon inputs, and either photon-counting postselection or conditional measurement. The use of postselection enables successful implementation with non-unit efficiency detectors. We also demonstrate how to make the same state more conveniently by replacing one of the single photon inputs by a coherent state.Comment: 4 pages, 1 figure. REVTeX4. Replaced with published versio

    Spectroscopy by frequency entangled photon pairs

    Full text link
    Quantum spectroscopy was performed using the frequency-entangled broadband photon pairs generated by spontaneous parametric down-conversion. An absorptive sample was placed in front of the idler photon detector, and the frequency of signal photons was resolved by a diffraction grating. The absorption spectrum of the sample was measured by counting the coincidences, and the result is in agreement with the one measured by a conventional spectrophotometer with a classical light source.Comment: 11 pages, 5 figures, to be published in Phys. Lett.

    An entangled two photon source using biexciton emission of an asymmetric quantum dot in a cavity

    Get PDF
    A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically-pumped biexciton in a quantum dot. Symmetric dots produce polarisation entanglement, but experimentally-realised asymmetric dots produce photons entangled in both polarisation and frequency. In this work, we investigate the possibility of erasing the `which-path' information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarisation-entangled photons. We consider a biexciton with non-degenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the non-degenerate exciton transition frequencies. An open quantum system approach is used to compute the polarisation entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarisation-entangled photon pairs, and even a non-ideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.Comment: 16 pages, 10 figures, submitted to PR

    An avalanche-photodiode-based photon-number-resolving detector

    Full text link
    Avalanche photodiodes are widely used as practical detectors of single photons.1 Although conventional devices respond to one or more photons, they cannot resolve the number in the incident pulse or short time interval. However, such photon number resolving detectors are urgently needed for applications in quantum computing,2-4 communications5 and interferometry,6 as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current belief,3,4 avalanche photodiodes are capable of detecting photon number, using a technique to measure very weak avalanches at the early stage of their development. Under such conditions the output signal from the avalanche photodiode is proportional to the number of photons in the incident pulse. As a compact, mass-manufactured device, operating without cryogens and at telecom wavelengths, it offers a practical solution for photon number detection.Comment: 12 pages, 4 figure

    Nonclassical excitation for atoms in a squeezed vacuum

    Get PDF
    The two-photon transition 6S(1/2) --> 6D(5/2) is investigated for trapped atomic cesium excited by squeezed light. The rate R of two-photon excitation versus intensity I is observed to be consistent with the functional form R = beta(1)I + beta(2)I(2), extending into a region with slope 1.3. This departure from the quadratic form for classical light sources is due to the fundamental alteration of atomic radiative processes by the nonclassical field
    corecore