117 research outputs found
Quantum diffraction and interference of spatially correlated photon pairs generated by spontaneous parametric down-conversion
We demonstrate one- and two-photon diffraction and interference experiments
utilizing parametric down-converted photon pairs (biphotons) and a transmission
grating. With two-photon detection, the biphoton exhibits a
diffraction-interference pattern equivalent to that of an effective single
particle that is associated with half the wavelength of the constituent
photons. With one-photon detection, however no diffraction-interference pattern
is observed. We show that these phenomena originate from the spatial quantum
correlation between the down-converted photons.Comment: 4 pages, 5 figure
Observation of Two-Photon Excitation for Three-Level Atoms in a Squeezed Vacuum
The two-photon transition (6S(sub 1/2) yields 6D(sub 5/2)) of atomic Cesium is investigated for excitation with squeezed vacuum generated via nondegenerate parametric down conversion. The two-photon excitation rate (R) is observed to have a non-quadratic dependence of R = aI(exp 2) + bI on the incident photon flux (I), reflecting the nonclassical correlations of the squeezed vacuum field
Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference
We demonstrate a method to determine the spectral purity of single photons.
The technique is based on the Hong-Ou-Mandel (HOM) interference between a
single photon state and a suitably prepared coherent field. We show that the
temporal width of the HOM dip is not only related to reciprocal of the spectral
width but also to the underlying quantum coherence. Therefore, by measuring the
width of both the HOM dip and the spectrum one can directly quantify the degree
of spectral purity. The distinct advantage of our proposal is that it obviates
the need for perfect mode matching, since it does not rely on the visibility of
the interference. Our method is particularly useful for characterizing the
purity of heralded single photon states.Comment: Extended version, 16 pages, 9 figure
Creation of maximally entangled photon-number states using optical fiber multiports
We theoretically demonstrate a method for producing the maximally
path-entangled state (1/Sqrt[2]) (|N,0> + exp[iN phi] |0,N>) using
intensity-symmetric multiport beamsplitters, single photon inputs, and either
photon-counting postselection or conditional measurement. The use of
postselection enables successful implementation with non-unit efficiency
detectors. We also demonstrate how to make the same state more conveniently by
replacing one of the single photon inputs by a coherent state.Comment: 4 pages, 1 figure. REVTeX4. Replaced with published versio
Spectroscopy by frequency entangled photon pairs
Quantum spectroscopy was performed using the frequency-entangled broadband
photon pairs generated by spontaneous parametric down-conversion. An absorptive
sample was placed in front of the idler photon detector, and the frequency of
signal photons was resolved by a diffraction grating. The absorption spectrum
of the sample was measured by counting the coincidences, and the result is in
agreement with the one measured by a conventional spectrophotometer with a
classical light source.Comment: 11 pages, 5 figures, to be published in Phys. Lett.
An entangled two photon source using biexciton emission of an asymmetric quantum dot in a cavity
A semiconductor based scheme has been proposed for generating entangled
photon pairs from the radiative decay of an electrically-pumped biexciton in a
quantum dot. Symmetric dots produce polarisation entanglement, but
experimentally-realised asymmetric dots produce photons entangled in both
polarisation and frequency. In this work, we investigate the possibility of
erasing the `which-path' information contained in the frequencies of the
photons produced by asymmetric quantum dots to recover polarisation-entangled
photons. We consider a biexciton with non-degenerate intermediate excitonic
states in a leaky optical cavity with pairs of degenerate cavity modes close to
the non-degenerate exciton transition frequencies. An open quantum system
approach is used to compute the polarisation entanglement of the two-photon
state after it escapes from the cavity, measured by the visibility of
two-photon interference fringes. We explicitly relate the two-photon visibility
to the degree of Bell-inequality violation, deriving a threshold at which
Bell-inequality violations will be observed. Our results show that an ideal
cavity will produce maximally polarisation-entangled photon pairs, and even a
non-ideal cavity will produce partially entangled photon pairs capable of
violating a Bell-inequality.Comment: 16 pages, 10 figures, submitted to PR
An avalanche-photodiode-based photon-number-resolving detector
Avalanche photodiodes are widely used as practical detectors of single
photons.1 Although conventional devices respond to one or more photons, they
cannot resolve the number in the incident pulse or short time interval.
However, such photon number resolving detectors are urgently needed for
applications in quantum computing,2-4 communications5 and interferometry,6 as
well as for extending the applicability of quantum detection generally. Here we
show that, contrary to current belief,3,4 avalanche photodiodes are capable of
detecting photon number, using a technique to measure very weak avalanches at
the early stage of their development. Under such conditions the output signal
from the avalanche photodiode is proportional to the number of photons in the
incident pulse. As a compact, mass-manufactured device, operating without
cryogens and at telecom wavelengths, it offers a practical solution for photon
number detection.Comment: 12 pages, 4 figure
Nonclassical excitation for atoms in a squeezed vacuum
The two-photon transition 6S(1/2) --> 6D(5/2) is investigated for trapped atomic cesium excited by squeezed light. The rate R of two-photon excitation versus intensity I is observed to be consistent with the functional form R = beta(1)I + beta(2)I(2), extending into a region with slope 1.3. This departure from the quadratic form for classical light sources is due to the fundamental alteration of atomic radiative processes by the nonclassical field
- …