6 research outputs found

    Amadori rearrangement products as potential biomarkers for inborn errors of amino-acid metabolism

    No full text
    The identification of disease biomarkers plays a crucial role in developing diagnostic strategies for inborn errors of metabolism and understanding their pathophysiology. A primary metabolite that accumulates in the inborn error phenylketonuria is phenylalanine, however its levels do not always directly correlate with clinical outcomes. Here we combine infrared ion spectroscopy and NMR spectroscopy to identify the Phe-glucose Amadori rearrangement product as a biomarker for phenylketonuria. Additionally, we find analogous amino acid-glucose metabolites formed in the body fluids of patients accumulating methionine, lysine, proline and citrulline. Amadori rearrangement products are well-known intermediates in the formation of advanced glycation end-products and have been associated with the pathophysiology of diabetes mellitus and ageing, but are now shown to also form under conditions of aminoacidemia. They represent a general class of metabolites for inborn errors of amino acid metabolism that show potential as biomarkers and may provide further insight in disease pathophysiology

    Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients

    No full text
    The implementation of whole-exome sequencing in clinical diagnostics has generated a need for functional evaluation of genetic variants. In the field of inborn errors of metabolism (IEM), a diverse spectrum of targeted biochemical assays is employed to analyze a limited amount of metabolites. We now present a single-platform, high-resolution liquid chromatography quadrupole time of flight (LC-QTOF) method that can be applied for holistic metabolic profiling in plasma of individual IEM-suspected patients. This method, which we termed "next-generation metabolic screening" (NGMS), can detect >10,000 features in each sample. In the NGMS workflow, features identified in patient and control samples are aligned using the "various forms of chromatography mass spectrometry (XCMS)" software package. Subsequently, all features are annotated using the Human Metabolome Database, and statistical testing is performed to identify significantly perturbed metabolite concentrations in a patient sample compared with controls. We propose three main modalities to analyze complex, untargeted metabolomics data. First, a targeted evaluation can be done based on identified genetic variants of uncertain significance in metabolic pathways. Second, we developed a panel of IEM-related metabolites to filter untargeted metabolomics data. Based on this IEM-panel approach, we provided the correct diagnosis for 42 of 46 IEMs. As a last modality, metabolomics data can be analyzed in an untargeted setting, which we term "open the metabolome" analysis. This approach identifies potential novel biomarkers in known IEMs and leads to identification of biomarkers for as yet unknown IEMs. We are convinced that NGMS is the way forward in laboratory diagnostics of IEM

    NANS-mediated synthesis of sialic acid is required for brain and skeletal development.

    Get PDF
    We identified biallelic mutations in NANS, the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), in nine individuals with infantile-onset severe developmental delay and skeletal dysplasia. Patient body fluids showed an elevation in N-acetyl-D-mannosamine levels, and patient-derived fibroblasts had reduced NANS activity and were unable to incorporate sialic acid precursors into sialylated glycoproteins. Knockdown of nansa in zebrafish embryos resulted in abnormal skeletal development, and exogenously added sialic acid partially rescued the skeletal phenotype. Thus, NANS-mediated synthesis of sialic acid is required for early brain development and skeletal growth. Normal sialylation of plasma proteins was observed in spite of NANS deficiency. Exploration of endogenous synthesis, nutritional absorption, and rescue pathways for sialic acid in different tissues and developmental phases is warranted to design therapeutic strategies to counteract NANS deficiency and to shed light on sialic acid metabolism and its implications for human nutrition
    corecore