42 research outputs found

    Trace Element Distribution in Magnetite Separates of Varying Origin: Genetic and Exploration Significance

    No full text
    Magnetite is a widespread mineral, as disseminated or massive ore. Representative magnetite samples separated from various geotectonic settings and rock-types, such as calc-alkaline and ophiolitic rocks, porphyry-Cu deposit, skarn-type, ultramafic lavas, black coastal sands, and metamorphosed Fe–Ni-laterites deposits, were investigated using SEM/EDS and ICP-MS analysis. The aim of this study was to establish potential relationships between composition, physico/chemical conditions, magnetite origin, and exploration for ore deposits. Trace elements, hosted either in the magnetite structure or as inclusions and co-existing mineral, revealed differences between magnetite separates of magmatic and hydrothermal origin, and hydrothermal magnetite separates associated with calc-alkaline rocks and ophiolites. First data on magnetite separates from coastal sands of Kos Island indicate elevated rare earth elements (REEs), Ti, and V contents, linked probably back to an andesitic volcanic source, while magnetite separated from metamorphosed small Fe–Ni-laterites occurrences is REE-depleted compared to large laterite deposits. Although porphyry-Cu deposits have a common origin in a supra-subduction environment, platinum-group elements (PGEs) have not been found in many porphyry-Cu deposits. The trace element content and the presence of abundant magnetite separates provide valuable evidence for discrimination between porphyry-Cu–Au–Pd–Pt and those lacking precious metals. Thus, despite the potential re-distribution of trace elements, including REE and PGE in magnetite-bearing deposits, they may provide valuable evidence for their origin and exploration

    Mineralogical and geochemical characteristics of the Skouries porphyry-Cu-Au-Pd-Pt deposit (Greece): Evidence for the precious metal

    No full text
    SEM/EDS studies on drill core samples from the deeper parts of the Skouries deposit showed frequent association of magnetite and Cu-minerals (bornite and chalcopyrite) with inclusions of thorite, U-bearing thorite, hydroxyl-apatite and rare earth element (REE)-enriched silicates of the epidote-group (allanite), zircon and rutile, linked to pervasive potassic and propylitic alteration type, in the central parts of the deposit. Isotopic and fluid inclusion trends in the Skouries porphyry Cu deposit seem to be systematic, beginning with high delta 180 and low delta D values for fluids in equilibrium with vein quartz representative of the main stage of Cu, Au, Pd, Pt mineralization, to low delta 180 and high delta D values for fluids linked with the pyrite-chalcopyrite mineralization. Mineralised porphyry from the peripheral parts of the deposit, characterized by the presence of xenoliths of mafic rock contain up to 690 ppm Cr, which is mainly hosted in disseminated fine grained-magnetite. Its Cr content ranges from 0.30 to 2.26 wt% Cr2O3, in contrast to the Cr-free magnetite accompanying the quartz veins of the main porphyry. Such a relatively high Cr content, despite the evolved geochemical signature, indicates that the high Pd and Pt mineralization in the porphyry deposit of the Skouries may be linked to the incorporation of PGE-enriched material either in the mantle source and/or within the crust at depth, prior to final emplacement

    Mineralogical and Geochemical Constraints on the Origin of Mafic–Ultramafic-Hosted Sulphides: The Pindos Ophiolite Complex

    No full text
    Sulphide ores hosted in deeper parts of ophiolite complexes may be related to either primary magmatic processes or links to hydrothermal alteration and metal remobilization into hydrothermal systems. The Pindos ophiolite complex was selected for the present study because it hosts both Cyprus-type sulphides (Kondro Hill) and Fe–Cu–Co–Zn sulphides associated with magnetite (Perivoli-Tsoumes) within gabbro, close to its tectonic contact with serpentinized harzburgite, and thus offers the opportunity to delineate constraints controlling their origin. Massive Cyprus-type sulphides characterized by relatively high Zn, Se, Au, Mo, Hg, and Sb content are composed of pyrite, chalcopyrite, bornite, and in lesser amounts covellite, siegenite, sphalerite, selenide-clausthalite, telluride-melonite, and occasionally tennantite–tetrahedrite. Massive Fe–Cu–Co–Zn-type sulphides associated with magnetite occur in a matrix of calcite and an unknown (Fe,Mg) silicate, resembling Mg–hisingerite within a deformed/metamorphosed ophiolite zone. The texture and mineralogical characteristics of this sulphide-magnetite ore suggest formation during a multistage evolution of the ophiolite complex. Sulphides (pyrrhotite, chalcopyrite, bornite, and sphalerite) associated with magnetite, at deeper parts of the Pindos (Tsoumes), exhibit relatively high Cu/(Cu + Ni) and Pt/(Pt + Pd), and low Ni/Co ratios, suggesting either no magmatic origin or a complete transformation of a preexisting magmatic assemblages. Differences recorded in the geochemical characteristics, such as higher Zn, Se, Mo, Au, Ag, Hg, and Sb and lower Ni contents in the Pindos compared to the Othrys sulphides, may reflect inheritance of a primary magmatic signature

    Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula

    No full text
    Porphyry Cu–Au–Pd±Pt deposits are significant Au resources, but their Pd and Pt potential is still unknown. Elevated Pd, Pt (hundreds of ppb) and Au contents are associated with typical stockwork magnetite-bornite-chalcopyrite assemblages, at the central parts of certain porphyry deposits. Unexpected high grade Cu–(Pd+Pt) (up to 6 ppm) mineralization with high Pd/Pt ratios at the Elatsite porphyry deposit, which is found in a spatial association with the Chelopech epithermal deposit (Bulgaria) and the Skouries porphyry deposit, may have formed during late stages of an evolved hydrothermal system. Estimated Pd, Pt and Au potential for porphyry deposits is consistent with literature model calculations demonstrating the capacity of aqueous vapor and brine to scavenge sufficient quantities of Pt and Pd, and could contribute to the global platinum-group element (PGE) production. Critical requirements controlling potential of porphyry deposits may be from the metals contained in magma (metasomatized asthenospheric mantle wedge as indicated by significant Cr, Co, Ni and Re contents). The Cr content may be an indicator for the mantle input

    The Cr(VI) Stability in Contaminated Coastal Groundwater: Salinity as a Driving Force

    No full text
    Chromium concentrations in seawater are less than 0.5 μg/L, but the Cr(VI) in contaminated coastal groundwater affected by Cr-bearing rocks/ores and/or human activities, coupled with the intrusion of seawater may reach values of hundreds of μg/L. A potential explanation for the stability of the harmful Cr(VI) in contaminated coastal aquifers is still unexplored. The present study is an overview of new and literature data on the composition of coastal groundwater and seawater, aiming to provide potential relationships between Cr(VI) with major components in seawater and explain the elevated Cr(VI) concentrations. It is known that the oxidation of Cr(III) to Cr(VI) and the subsequent back-reduction of Cr(VI) processes, during the transport of the mobilized Cr(VI) in various aquifers, facilitate the natural attenuation process of Cr(VI). Moreover, the presented positive trend between B and Cr(VI) and negative trend between δ53Cr values and B concentration may suggest that seawater components significantly inhibit the Cr(VI) reduction into Cr(III), and provide insights on the role of the borate, [B(OH)4]− ions, a potential buffer, on the stability of Cr(VI) in coastal groundwater. Therefore, efforts are needed toward the prevention and/or minimization of the contamination by Cr(VI) of in coastal aquifers, which are influenced by the intrusion of seawater and are threatened by changes in sea level, due to climate change. The knowledge of the contamination sources, hotspots and monitoring of water salinization processes (geochemical mapping) for every coastal country may contribute to the optimization of agricultural management strategies

    Cycling of Pt, Pd, and Rh Derived from Catalytic Converters: Potential Pathways and Biogeochemical Processes

    No full text
    The present study is an integrated approach to the Pt, Pd, and Rh cycling derived from catalytic converters along highway roadsides of the Athens Basin, including their contents, the dispersed Pt- and Pd-bearing nano- and microparticles in dust and bioaccumulation in plants, aiming to assess the auto-catalyst-derived environmental impact to the large city of Athens and the potential human health risk. The determined mean values of 314 Pt, 510 Pd, and 23 Rh (all in μg/kg) in dust samples are much lower than the 2070 μg/kg Pt and 1985 μg/kg Pd contents in gully pots in the Katechaki peripheral highway and higher than the mean values of 230 Pt, 300 Pd, and 13 Rh (all in μg/kg) in the soil samples. With the exception of two samples from gully pots, from 51% to 70% of the samples (for the Pd and Pt, respectively) fall in the range from 100 to 400 μg/kg. The calculated accumulation factors showed means of 3.88 μg/kg Pd and 2.95 μg/kg Pt for plants and tree leaves, but any significant difference (t-test) is lacking, and they are much lower than those reported for roots of plants (literature data). Although the Pt, Pd, and Rh bioaccumulation factors for shoots of plants/crops are relatively low, the increasing number of cars with catalytic converters in Greece and the relatively high bioaccumulation in the food chain may highlight a potential risk for human health and ecosystems, and the need for special attention on their bioaccumulation and bioaccessibility on a global scale

    On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview

    No full text
    In this contribution we review the mineralogical characteristics of five new and rare minerals discovered in the Othrys and Vermion ophiolites located in Greece, with the aim to better understand their origin. Three new minerals, namely tsikourasite Mo3Ni2P(1+x) (x 7S8, were found in the chromitite from the Agios Stefanos deposit, whereas arsenotučekite Ni18Sb3AsS16 was discovered in the Eretria (Tsangli) chromium mine, located in the Othrys ophiolite complex. The formation of the new phosphides tsikourasite and grammatikopoulosite and the sulfide eliopoulosite from Agios Stefanos took place after the precipitation of the host chromitite. Very likely, they formed at lower pressure in an extremely low fO2 and reducing environment during the serpentinization that affected the host ophiolite. The origin of arsenotučekite in chromitites coexisting with Fe–Ni–Cu-sulfide mineralization and magnetite at the Eretria (Tsangli) mine, is believed to be related to a circulating hydrothermal system. The most salient feature of theophrastite Ni(OH)2 and associated unnamed (Ni,Co,Mn)(OH)2 with a varying compositional range and a concentrating development, as successive thin layers, composed by fine fibrous crystals. The extremely tiny crystals of these hydroxides and the spatial association of mixed layers of Ni-silicides with theophrastite may reflect the significant role of the interaction process between adjacent layers on the observed structural features. The scarcity in nature of the new minerals reviewed in this paper is probably due to the required extreme physical-chemical conditions, which are rarely precipitated

    On the Origin of New and Rare Minerals Discovered in the Othrys and Vermion Ophiolites, Greece: An Overview

    No full text
    In this contribution we review the mineralogical characteristics of five new and rare minerals discovered in the Othrys and Vermion ophiolites located in Greece, with the aim to better understand their origin. Three new minerals, namely tsikourasite Mo3Ni2P(1+x) (x < 0.25), grammatikopoulosite NiVP and eliopoulosite V7S8, were found in the chromitite from the Agios Stefanos deposit, whereas arsenotučekite Ni18Sb3AsS16 was discovered in the Eretria (Tsangli) chromium mine, located in the Othrys ophiolite complex. The formation of the new phosphides tsikourasite and grammatikopoulosite and the sulfide eliopoulosite from Agios Stefanos took place after the precipitation of the host chromitite. Very likely, they formed at lower pressure in an extremely low fO2 and reducing environment during the serpentinization that affected the host ophiolite. The origin of arsenotučekite in chromitites coexisting with Fe–Ni–Cu-sulfide mineralization and magnetite at the Eretria (Tsangli) mine, is believed to be related to a circulating hydrothermal system. The most salient feature of theophrastite Ni(OH)2 and associated unnamed (Ni,Co,Mn)(OH)2 with a varying compositional range and a concentrating development, as successive thin layers, composed by fine fibrous crystals. The extremely tiny crystals of these hydroxides and the spatial association of mixed layers of Ni-silicides with theophrastite may reflect the significant role of the interaction process between adjacent layers on the observed structural features. The scarcity in nature of the new minerals reviewed in this paper is probably due to the required extreme physical-chemical conditions, which are rarely precipitated
    corecore