1,999 research outputs found

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft

    Effect of hydrogen adsorption on the quasiparticle spectra of graphene

    Full text link
    We use the non-interacting tight-binding model to study the effect of isolated hydrogen adsorbates on the quasiparticle spectra of single-layer graphene. Using the Green's function approach, we obtain analytic expressions for the local density of states and the spectral function of hydrogen-doped graphene, which are also numerically evaluated and plotted. Our results are relevant for the interpretation of scanning tunneling microscopy and angle-resolved photoemission spectroscopy data of functionalized graphene.Comment: 4 pages, 3 figures, minor corrections to tex

    An expert review of REVERIE and its potential for game-based learning

    Get PDF
    REVERIE (REal and Virtual Engagement in Realistic Immersive Environments) is a research project with the aim to build a safe, collaborative, online environment which brings together realistic inter-personal communication and interaction. The REVERIE platform integrates cutting-edge technologies and tools, such as social networking services, spatial audio adaptation techniques, tools for creating personalized lookalike avatars, and artificial intelligence (A.I) detection features of the user’s affective state into two distinct use cases. The first shows how REVERIE can be used in educational environments with an emphasis on social networking and learning. The second aims to emulate the look and feel of real physical presence and interaction for entertainment and collaborative purposes. This paper presents an expert evaluation of the first use case by potential users of REVERIE (teachers and students). Finally, the potential of REVERIE for game-based learning is discussed and follow this with an overview of the actionable recommendations that emerged as a result of the expert review

    Automated online preconcentration system for the determination of trace amounts of lead using Pb-selective resin and inductively coupled plasma-atomic emission spectrometry

    Get PDF
    An automated sequential-injection online preconcentration system was developed for the determination of lead by inductively coupled plasma - atomic emission spectrometry (ICP-AES). The preconcentration of lead was performed with a minicolumn containing a lead-selective resin, Analig Pb-01, which was installed between a selection and a switching valve. In an acidic condition ( pH 1), lead could be adsorbed on the resin. The concentrated lead was afterward eluted with 25 mu L of 0.06 M nitrilotriacetic acid (NTA) solution ( pH 9) and was subsequently transported into the nebulizer of ICP-AES for quantification. The selectivity of the resin toward lead was examined using a solution containing a mixture of 61 elements. When a sample volume of 5 mL was used, the quantitative collection of lead ( &#62;= 97%) was achieved, along with an enrichment factor of 19, a sampling frequency of 12 samples hr(-1), a detection limit of 70 pg mL(-1), and a lowest quantification limit of 100 pg mL(-1). The linear dynamic range was 0.1 to 5 ng mL(-1), and the relative standard deviation (n = 9) was 0.5% at a 5 ng mL(-1) Pb level. The detection limit of 30 pg mL(-1) and lowest quantification limit of 50 pg mL(-1) could be achieved when 10 mL of sample volume was used. The accuracy of the proposed method was validated by determining lead in the standard reference material of river water (SLRS-4), and its applicability to the determination of lead in environmental river water samples was demonstrated.</p

    Many-body effects on the capacitance of multilayers made from strongly correlated materials

    Full text link
    Recent work by Kopp and Mannhart on novel electronic systems formed at oxide interfaces has shown interesting effects on the capacitances of these devices. We employ inhomogeneous dynamical mean-field theory to calculate the capacitance of multilayered nanostructures. These multilayered nanostructures are composed of semi-infinite metallic leads coupled via a strongly correlated dielectric barrier region. The barrier region can be adjusted from a metallic regime to a Mott insulator through adjusting the interaction strength. We examine the effects of varying the barrier width, temperature, potential difference, screening length, and chemical potential. We find that the interaction strength has a relatively strong effect on the capacitance, while the potential and temperature show weaker dependence.Comment: 19 pages, 7 figures, REVTe
    • …
    corecore