841 research outputs found

    Physiological Effects of Training in Elite German Winter Sport Athletes: Sport Specific Remodeling Determined Using Echocardiographic Data and CPET Performance Parameters

    Get PDF
    Nine ski mountaineering (Ski-Mo), ten Nordic-cross country (NCC), and twelve world elite biathlon (Bia) athletes were evaluated for cardiopulmonary exercise test (CPET) performance and pronounced echocardiographic physiological cardiac remodeling as a primary aim of our descriptive preliminary report. In this context, a multicenter retrospective analysis of two-dimensional echocardiographic data including speckle tracking of the left ventricle (LV-GLS) and CPET performance analysis was performed in 31 elite world winter sports athletes, which were obtained during the annual sports medicine examination between 2020 and 2021. The matched data of the elite winter sports athletes (14 women, 17 male athletes, age: 18-32 years) were compared for different CPET and echocardiographic parameters, anthropometric data, and sport-specific training schedules. Significant differences could be revealed for left atrial (LA) remodeling by LA volume index (LAVI, p = 0.0052), LV-GLS (p = 0.0003), and LV mass index (LV Mass index, p = 0.0078) between the participating disciplines. All participating athletes showed excellent performance data in the CPET analyses, whereby significant differences were revealed for highest maximum respiratory minute volume (VE (maximum)) and the maximum oxygen pulse level across the participating athletes. This study on sport specific physiological demands in elite winter sport athletes provides new evidence that significant differences in CPET and cardiac remodeling of the left heart can be identified based on the individual athlete's training schedule, frequency, and physique

    Myokines and Resistance Training : A Narrative Review

    Get PDF
    In the last few years, the muscular system has gained attention due to the discovery of the muscle-secretome and its high potency for retaining or regaining health. These cytokines, described as myokines, released by the working muscle, are involved in anti-inflammatory, metabolic and immunological processes. These are able to influence human health in a positive way and are a target of research in metabolic diseases, cancer, neurological diseases, and other non-communicable diseases. Therefore, different types of exercise training were investigated in the last few years to find associations between exercise, myokines and their effects on human health. Particularly, resistance training turned out to be a powerful stimulus to enhance myokine release. As there are different types of resistance training, different myokines are stimulated, depending on the mode of training. This narrative review gives an overview about resistance training and how it can be utilized to stimulate myokine production in order to gain a certain health effect. Finally, the question of why resistance training is an important key regulator in human health will be discussed

    Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes

    Get PDF
    IntroductionThis study investigated the degree and direction (kHR) of the heart rate to performance curve (HRPC) during cardio-pulmonary exercise (CPX) testing and explored the relationship with diabetes markers, anthropometry and exercise physiological markers in type 1 diabetes (T1DM).Material and methodsSixty-four people with T1DM (13 females; age: 34 ± 8 years; HbA1c: 7.8 ± 1% (62 ± 13 mmol.mol-1) performed a CPX test until maximum exhaustion. kHR was calculated by a second-degree polynomial representation between post-warm up and maximum power output. Adjusted stepwise linear regression analysis was performed to investigate kHR and its associations. Receiver operating characteristic (ROC) curve was performed based on kHR for groups kHR 0.20 in relation to HbA1c.ResultsWe found significant relationships between kHR and HbA1c (β = -0.70, P < 0.0001), age (β = -0.23, P = 0.03) and duration of diabetes (β = 0.20, P = 0.04). Stepwise linear regression resulted in an overall adjusted R2 of 0.57 (R = 0.79, P < 0.0001). Our data revealed also significant associations between kHR and percentage of heart rate at heart rate turn point from maximum heart rate (β = 0.43, P < 0.0001) and maximum power output relativized to bodyweight (β = 0.44, P = 0.001) (overall adjusted R2 of 0.44 (R = 0.53, P < 0.0001)). ROC curve analysis based on kHR resulted in a HbA1c threshold of 7.9% (62 mmol.mol-1).ConclusionOur data demonstrate atypical HRPC during CPX testing that were mainly related to glycemic control in people with T1DM

    Performance of the Intermittently Scanned Continuous Glucose Monitoring (isCGM) System during a High Oral Glucose Challenge in Adults with Type 1 Diabetes : A Prospective Secondary Outcome Analysis

    Get PDF
    To assess intermittently scanned continuous glucose monitoring (isCGM) performance for different rates of change in plasma glucose (RCPG) during glycemic challenges in type 1 diabetes (T1D). Nineteen people with T1D (7 females; age 35 &plusmn; 11 years; HbA1c 7.3 &plusmn; 0.6% (56 &plusmn; 7 mmol/mol)) performing two glycemic challenges (OGTT) were included. During OGTTs, plasma glucose was compared against sensor glucose for timepoints 0 min (pre-OGTT), +15 min, +30 min, +60 min, +120 min, +180 min, and +240 min by means of median absolute (relative) difference (MARD and MAD) and Clarke Error Grid (CEG), then was stratified for RCPG and glycemic ranges. Overall, MARD was 8.3% (4.0&ndash;14.8) during hypoglycemia level 1 18.8% (15.8&ndash;22.0), euglycemia 9.5% (4.3&ndash;15.1), hyperglycemia level 1 9.4% (4.0&ndash;17.2), and hyperglycemia level 2 7.1% (3.3&ndash;11.9). The MARD was associated with the RCPG (p &lt; 0.0001), detailing significant differences in comparison of low, moderate, high, and very high RCPG (p = 0.014). Overall, CEG resulted in 88% (212 values) of comparison points in zone A, 12% (29 values) in zone B, and 0.4% (1 value) in zone D. The isCGM system was accurate during OGTTs. Its performance was dependent on the RCPG and showed an overestimation of the actual reference glucose during hypoglycemia

    Differences in Hemodynamic, Hormonal and Heart Rate Variability Parameters in Complication-Free Pregnancies Compared to Individuals with Gestational Diabetes Mellitus and Preeclampsia : An Observational Retrospective Analysis

    Get PDF
    To investigate differences in hemodynamic, hormonal and heart rate variability parameters in women following complication-free pregnancies (healthy), preeclampsia and gestational diabetes mellitus (GDM) after giving childbirth. Data of 60 women (healthy: n = 29, age 32.7 ± 4.5 years, BMI 24.2 ± 4.3 kg/m(2); preeclampsia: n = 16, age 35.3 ± 4.4 years, 28.5 ± 6.4 kg/m(2); GDM, n = 15, age 32.3 ± 6.0 years, BMI 26.4 ± 6.2 kg/m(2)) were included. Two visits were conducted 16 and 48 weeks after giving childbirth. Hair samples were taken for analysis of cortisol and testosterone. ECG and blood pressure were recorded at each visit. Data were analyzed via RM-ANOVA and post-hoc testing (p ≤ 0.05). Heart rate increased from visit 1 to visit 2, whereas SDNN decreased (both p = 0.03). RMSSD showed an increased trend for groups (p = 0.06). Testosterone in the GDM group was significantly higher compared to the other groups (p = 0.002). Cortisol levels were significantly higher following post-hoc testing GDM was different compared to healthy individuals (p = 0.02). Hemodynamic changes from week 16 to week 48 did not differ between groups (p > 0.05). No differences between individuals with preeclampsia and healthy individuals were found for all hemodynamic parameters (p > 0.05). The study showed higher levels of chronic stress indicators in GDM measured via heart rate variability and cortisol compared to women with a history of preeclampsia and healthy women

    Different Heart Rate Patterns During Cardio-Pulmonary Exercise (CPX) Testing in Individuals With Type 1 Diabetes

    Get PDF
    To investigate the heart rate during cardio-pulmonary exercise (CPX) testing in individuals with type 1 diabetes (T1D) compared to healthy (CON) individuals. Fourteen people (seven individuals with T1D and seven CON individuals) performed a CPX test until volitional exhaustion to determine the first and second lactate turn points (LTP1 and LTP2), ventilatory thresholds (VT1 and VT2), and the heart rate turn point. For these thresholds cardio-respiratory variables and percentages of maximum heart rate, heart rate reserve, maximum oxygen uptake and oxygen uptake reserve, and maximum power output were compared between groups. Additionally, the degree and direction of the deflection of the heart rate to performance curve (kHR) were compared between groups. Individuals with T1D had similar heart rate at LTP1 (mean difference) −11, [(95% confidence interval) −27 to 4 b.min−1], at VT1 (−12, −8 to 33 b.min−1) and at LTP2 (−7, −13 to 26 b.min−1), at VT2 (−7, −13 to 28 b.min−1), and at the heart rate turn point (−5, −14 to 24 b.min−1) (p = 0.22). Heart rate expressed as percentage of maximum heart rate at LTP1, VT1, LTP2, VT2 and the heart rate turn point as well as expressed as percentages of heart rate reserve at LTP2, VT2 and the heart rate turn point was lower in individuals with T1D (p < 0.05). kHR was lower in T1D compared to CON individuals (0.11 ± 0.25 vs. 0.51 ± 0.32, p = 0.02). Our findings demonstrate that there are clear differences in the heart rate response during CPX testing in individuals with T1D compared to CON individuals. We suggest using submaximal markers to prescribe exercise intensity in people with T1D, as the heart rate at thresholds is influenced by kHR

    Acute Changes in Heart Rate Variability to Glucose and Fructose Supplementation in Healthy Individuals : A Double-Blind Randomized Crossover Placebo-Controlled Trial

    Get PDF
    SIMPLE SUMMARY: In this study, we investigated the cardio-autonomic stress responses to the ingestion of liquid glucose, fructose, a combination thereof and a placebo in healthy individuals at rest. The cardio-autonomic response was more pronounced in all groups with carbohydrates compared to placebo indicating an increased cardio-autonomic stress response resulting in a reduced heart-rate variability. When investigating different levels of blood glucose, the findings showed a significant decline in heart-rate variability with increasing blood glucose levels. This was also seen with severely low levels of blood glucose. The speed of how quick blood glucose increased and decreased also impacted the cardio-autonomic response which further deteriorated heart-rate variability. These findings indicate that healthy human’s autonomic system responds quickly to changes in their blood glucose. ABSTRACT: Background: It is unknown how different types of carbohydrates alter the cardio-autonomic system in healthy individuals. Therefore, the aim of this study was to investigate how heart-rate variability changes to single dose ingestion of glucose, fructose, glucose and fructose, and an artificial sweetener (sucralose). Methods: In a double-blind randomized crossover placebo-controlled setting, 15 participants received all study-specific substances in liquid form. During each 2-h visit, venous blood glucose was measured in a 5-min interval while heart-rate variability was measured continuously via Holter-electrocardiograph. Results: Ingestion of different types of carbohydrates and sucralose showed significant differences for heart rate (p < 0.001), SDNN (p < 0.008), RMSSD (p < 0.001), pNN50 (p < 0.001) and blood pressure (p < 0.001). Different glucose levels significantly altered parameters of heart-rate variability and blood pressure (all p < 0.001), while the rate of change in blood glucose led to changes in heart rate variability, but not in heart rate (p = 0.25) or blood pressure (p = 0.99). Conclusions: Ingestion of different types of carbohydrates lead to reductions in heart-rate variability compared to a placebo. Blood glucose values above or below 70–90 mg/dL decreased heart rate variability while this was also seen for rapid glucose changes, yet not as pronounced. Healthy individuals should be conscious about carbohydrate intake while maintaining blood glucose levels between 70–90 mg/dL

    Metabolomic, hormonal and physiological responses to hypoglycemia versus euglycemia during exercise in adults with type 1 diabetes

    Get PDF
    Introduction This study sought to compare the metabolomic, hormonal and physiological responses to hypoglycemia versus euglycemia during exercise in adults with type 1 diabetes (T1D).Research design and methods Thirteen individuals with T1D (hemoglobin; 7.0%±1.3% (52.6±13.9 mmol/mol), age; 36±15 years, duration diabetes; 15±12 years) performed a maximum of 45 min submaximal exercise (60%±6% V̇O2max). Retrospectively identified exercise sessions that ended in hypoglycemia ((HypoEx) blood glucose (BG)≤3.9 mmol/L) were compared against a participant-matched euglycemic condition ((EuEx) BG≥4.0, BG≤10.0 mmol/L). Samples were compared for detailed physiological and hormonal parameters as well as metabolically profiled via large scale targeted ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Data were assessed using univariate and multivariate analysis techniques with false discovery rate adjustment. Significant results were considered at p≤0.05.Results Cardiorespiratory and counterregulatory hormone responses, whole-body fuel use and perception of fatigue during exercise were similar under conditions of hypoglycemia and euglycemia (BG 3.5±0.3 vs 5.8±1.1 mmol/L, respectively p<0.001). HypoEx was associated with greater adenosine salvage pathway activity (5’-methylthioadenosine, p=0.023 and higher cysteine and methionine metabolism), increased utilization of glucogenic amino acids (glutamine, p=0.021, alanine, aspartate and glutamate metabolism and homoserine/threonine, p=0.045) and evidence of enhanced β-oxidation (lower carnitine p<0.001, higher long-chain acylcarnitines).Conclusions Exposure to acute hypoglycemia during exercise potentiates alterations in subclinical indices of metabolic stress at the level of the metabolome. However, the physiological responses induced by dynamic physical exercise may mask the symptomatic recognition of mild hypoglycemia during exercise in people with T1D, a potential clinical safety concern that reinforces the need for diligent glucose management
    • …
    corecore