2,159 research outputs found

    Lyapunov Mode Dynamics in Hard-Disk Systems

    Full text link
    The tangent dynamics of the Lyapunov modes and their dynamics as generated numerically - {\it the numerical dynamics} - is considered. We present a new phenomenological description of the numerical dynamical structure that accurately reproduces the experimental data for the quasi-one-dimensional hard-disk system, and shows that the Lyapunov mode numerical dynamics is linear and separate from the rest of the tangent space. Moreover, we propose a new, detailed structure for the Lyapunov mode tangent dynamics, which implies that the Lyapunov modes have well-defined (in)stability in either direction of time. We test this tangent dynamics and its derivative properties numerically with partial success. The phenomenological description involves a time-modal linear combination of all other Lyapunov modes on the same polarization branch and our proposed Lyapunov mode tangent dynamics is based upon the form of the tangent dynamics for the zero modes

    Renormalization analysis of intermittency in two coupled maps

    Full text link
    The critical behavior for intermittency is studied in two coupled one-dimensional (1D) maps. We find two fixed maps of an approximate renormalization operator in the space of coupled maps. Each fixed map has a common relavant eigenvaule associated with the scaling of the control parameter of the uncoupled one-dimensional map. However, the relevant ``coupling eigenvalue'' associated with coupling perturbation varies depending on the fixed maps. These renormalization results are also confirmed for a linearly-coupled case.Comment: 11 pages, RevTeX, 2 eps figure

    Phase Slips and the Eckhaus Instability

    Full text link
    We consider the Ginzburg-Landau equation, tu=x2u+uuu2 \partial_t u= \partial_x^2 u + u - u|u|^2 , with complex amplitude u(x,t)u(x,t). We first analyze the phenomenon of phase slips as a consequence of the {\it local} shape of uu. We next prove a {\it global} theorem about evolution from an Eckhaus unstable state, all the way to the limiting stable finite state, for periodic perturbations of Eckhaus unstable periodic initial data. Equipped with these results, we proceed to prove the corresponding phenomena for the fourth order Swift-Hohenberg equation, of which the Ginzburg-Landau equation is the amplitude approximation. This sheds light on how one should deal with local and global aspects of phase slips for this and many other similar systems.Comment: 22 pages, Postscript, A

    The fractality of the relaxation modes in deterministic reaction-diffusion systems

    Full text link
    In chaotic reaction-diffusion systems with two degrees of freedom, the modes governing the exponential relaxation to the thermodynamic equilibrium present a fractal structure which can be characterized by a Hausdorff dimension. For long wavelength modes, this dimension is related to the Lyapunov exponent and to a reactive diffusion coefficient. This relationship is tested numerically on a reactive multibaker model and on a two-dimensional periodic reactive Lorentz gas. The agreement with the theory is excellent

    Correlation between clustering and degree in affiliation networks

    Full text link
    We are interested in the probability that two randomly selected neighbors of a random vertex of degree (at least) kk are adjacent. We evaluate this probability for a power law random intersection graph, where each vertex is prescribed a collection of attributes and two vertices are adjacent whenever they share a common attribute. We show that the probability obeys the scaling kδk^{-\delta} as k+k\to+\infty. Our results are mathematically rigorous. The parameter 0δ10\le \delta\le 1 is determined by the tail indices of power law random weights defining the links between vertices and attributes

    Summability of the perturbative expansion for a zero-dimensional disordered spin model

    Get PDF
    We show analytically that the perturbative expansion for the free energy of the zero dimensional (quenched) disordered Ising model is Borel-summable in a certain range of parameters, provided that the summation is carried out in two steps: first, in the strength of the original coupling of the Ising model and subsequently in the variance of the quenched disorder. This result is illustrated by some high-precision calculations of the free energy obtained by a straightforward numerical implementation of our sequential summation method.Comment: LaTeX, 12 pages and 4 figure

    Universality of residence-time distributions in non-adiabatic stochastic resonance

    Get PDF
    We present mathematically rigorous expressions for the residence-time and first-passage-time distributions of a periodically forced Brownian particle in a bistable potential. For a broad range of forcing frequencies and amplitudes, the distributions are close to periodically modulated exponential ones. Remarkably, the periodic modulations are governed by universal functions, depending on a single parameter related to the forcing period. The behaviour of the distributions and their moments is analysed, in particular in the low- and high-frequency limits.Comment: 8 pages, 1 figure New version includes distinction between first-passage-time and residence-time distribution

    Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas II: The many point particles system

    Full text link
    We study the stationary nonequilibrium states of N point particles moving under the influence of an electric field E among fixed obstacles (discs) in a two dimensional torus. The total kinetic energy of the system is kept constant through a Gaussian thermostat which produces a velocity dependent mean field interaction between the particles. The current and the particle distribution functions are obtained numerically and compared for small E with analytic solutions of a Boltzmann type equation obtained by treating the collisions with the obstacles as random independent scatterings. The agreement is surprisingly good for both small and large N. The latter system in turn agrees with a self consistent one particle evolution expected to hold in the limit of N going to infinity.Comment: 14 pages, 9 figure

    New Universality of Lyapunov Spectra in Hamiltonian Systems

    Full text link
    A new universality of Lyapunov spectra {\lambda_i} is shown for Hamiltonian systems. The universality appears in middle energy regime and is different from another universality which can be reproduced by random matrices in the following two points. One is that the new universality appears in a limited range of large i/N rather than the whole range, where N is degrees of freedom. The other is Lyapunov spectra do not behave linearly while random matrices give linear behavior even on 3D lattice. Quadratic terms with smaller nonlinear terms of potential functions play an intrinsic role in the new universality.Comment: 19 pages, 16 Encapsulated Postscript figures, LaTeX (100 kb

    Boundary effects in the stepwise structure of the Lyapunov spectra for quasi-one-dimensional systems

    Full text link
    Boundary effects in the stepwise structure of the Lyapunov spectra and the corresponding wavelike structure of the Lyapunov vectors are discussed numerically in quasi-one-dimensional systems consisting of many hard-disks. Four kinds of boundary conditions constructed by combinations of periodic boundary conditions and hard-wall boundary conditions are considered, and lead to different stepwise structures of the Lyapunov spectra in each case. We show that a spatial wavelike structure with a time-oscillation appears in the spatial part of the Lyapunov vectors divided by momenta in some steps of the Lyapunov spectra, while a rather stationary wavelike structure appears in the purely spatial part of the Lyapunov vectors corresponding to the other steps. Using these two kinds of wavelike structure we categorize the sequence and the kinds of steps of the Lyapunov spectra in the four different boundary condition cases.Comment: 33 pages, 25 figures including 10 color figures. Manuscript including the figures of better quality is available from http://newt.phys.unsw.edu.au/~gary/step.pd
    corecore