28 research outputs found
Metals and kidney markers in adult offspring of endemic nephropathy patients and controls: a two-year follow-up study
Abstract Background The etiology of Balkan Endemic Nephropathy, (BEN), a tubulointerstitial kidney disease, is unknown. Although this disease is endemic in rural areas of Bosnia, Bulgaria, Croatia, Romania, and Serbia, similar manifestations are reported to occur in other regions, for instance Tunisia and Sri Lanka. A number of explanations have been stated including lignites, aristolochic acid, ochratoxin A, metals, and metalloids. Etiologic claims are often based on one or a few studies without sound scientific evidence. In this systematic study, we tested whether exposures to metals (cadmium and lead) and metalloids (arsenic and selenium) are related to Balkan Endemic Nephropathy. Methods In 2003/04 we recruited 102 adults whose parents had BEN and who resided in one of three communities (Vratza, Bistretz, or Beli Izvor, Bulgaria). A control group comprised of 99 adults having non-BEN hospitalized parents was enrolled in the study during the same time. We conducted face-to-face interviews, ultrasound kidney measurements, and determined kidney function in two consecutive investigations (2003/04 and 2004/05). Metals and metalloids were measured in urine and blood samples. To assess the agreement between these consecutive measurements, we calculated intraclass correlation coefficients. Repeated measurement data were analyzed using mixed models. Results We found that cadmium and arsenic were associated with neither kidney size nor function. Lead had a significant but negligible effect on creatinine clearance. Selenium showed a weak but significant negative association with two of the four kidney parameters, namely creatinine clearance and β2-microglobulin. It was positively related to kidney length. These associations were not restricted to the offspring of BEN patients. Adding credence to these findings are reports showing comparable kidney effects in animals exposed to selenium. Conclusion The findings of this 2-year follow-up study indicate that metals and metalloids do not play a role in the etiology of Balkan Endemic Nephropathy. Against the assumption in the literature, selenium was not protective but a risk factor. Since comparable associations were observed in animals, future studies are needed to explore whether selenium may have adverse renal effects in humans.</p
Recommended from our members
Cellular changes in boric acid-treated DU-145 prostate cancer cells.
Epidemiological, animal, and cell culture studies have identified boron as a chemopreventative agent in prostate cancer. The present objective was to identify boron-induced changes in the DU-145 human prostate cancer cell line. We show that prolonged exposure to pharmacologically-relevant levels of boric acid, the naturally occurring form of boron circulating in human plasma, induces the following morphological changes in cells: increases in granularity and intracellular vesicle content, enhanced cell spreading and decreased cell volume. Documented increases in beta-galactosidase activity suggest that boric acid induces conversion to a senescent-like cellular phenotype. Boric acid also causes a dose-dependent reduction in cyclins A-E, as well as MAPK proteins, suggesting their contribution to proliferative inhibition. Furthermore, treated cells display reduced adhesion, migration and invasion potential, along with F-actin changes indicative of reduced metastatic potential. Finally, the observation of media acidosis in treated cells correlated with an accumulation of lysosome-associated membrane protein type 2 (LAMP-2)-negative acidic compartments. The challenge of future studies will be to identify the underlying mechanism responsible for the observed cellular responses to this natural blood constituent
Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells
Dietary boron intake is associated with reduced prostate and lung cancer risk and increased bone mass. Boron is absorbed and circulated as boric acid (BA) and at physiological concentrations is a reversible competitive inhibitor of cyclic ADP ribose, the endogenous agonist of the ryanodine receptor calcium (Ca ) channel, and lowers endoplasmic reticulum (ER) [Ca ]. Low ER [Ca ] has been reported to induce ER stress and activate the eIF2α/ATF4 pathway. Here we report that treatment of DU-145 prostate cells with physiological levels of BA induces ER stress with the formation of stress granules and mild activation of eIF2α, GRP78/BiP, and ATF4. Mild activation of eIF2α and its downstream transcription factor, ATF4, enables cells to reconfigure gene expression to manage stress conditions and mild activation of ATF4 is also required for the differentiation of osteoblast cells. Our results using physiological levels of boric acid identify the eIF2α/ATF pathway as a plausible mode of action that underpins the reported health effects of dietary boron. +2 2+ 2
Maternal ethanol exposure is associated with decreased plasma zinc and increased fetal abnormalities in normal but not metallothionein-null mice
BackgroundEthanol profoundly affects fetal development, and this is proposed to be due primarily to a transient fetal zinc (Zn) deficiency that arises from the binding of Zn by metallothionein (MT) in the maternal liver. Zn homeostasis and fetal outcome were investigated in normal (MT+/+) and metallothionein-null (MT-/-) mice in response to ethanol exposure.Methods/resultsMice were treated with saline or ethanol (0.015 m/g intraperitoneally at 0 and 4 hr) on day 8 of gestation (Gd8), and the degree of fetal dysmorphology was assessed on Gd18. The incidence of external abnormalities was significantly increased in offspring from MT+/+ dams exposed to ethanol, where 27.4% of fetuses were affected. MT-/- ethanol-, MT+/+ saline-, and MT-/- saline-treated dams had fetuses in which the frequencies of abnormalities were 2.2, 6.4, and 6.9%, respectively. To investigate Zn homeostasis, nonpregnant mice were killed at intervals over 16 hr after ethanol injection. Liver MT concentrations in MT+/+ mice were increased 20-fold by 16 hr, with a significant elevation evident by 4 hr, whereas liver Zn levels were also significantly increased by 2 hr and maintained for 16 hr. In parallel with these changes, plasma Zn concentrations in MT+/+ mice decreased by 65%, with minimum levels of 4.5+/-0.3 micromol/liter at 8 hr. Conversely, MT-/- mice exhibited increased plasma Zn concentrations, with peak values of 20.8+/-0.3 observed at 4 hr.ConclusionThese findings link the teratogenic effect of ethanol to the induction of maternal MT and the limitation of fetal Zn supply from the plasma.Carey, Luke C. ; Coyle, Peter ; Philcox, Jeffrey C. ; Rofe, Allan M
