2,503 research outputs found

    Order-disorder transitions in a sheared many body system

    Get PDF
    Motivated by experiments on sheared suspensions that show a transition between ordered and disordered phases, we here study the long-time behavior of a sheared and overdamped 2-d system of particles interacting by repulsive forces. As a function of interaction strength and shear rate we find transitions between phases with vanishing and large single-particle diffusion. In the phases with vanishing single-particle diffusion, the system evolves towards regular lattices, usually on very slow time scales. Different lattices can be approached, depending on interaction strength and forcing amplitude. The disordered state appears in parameter regions where the regular lattices are unstable. Correlation functions between the particles reveal the formation of shear bands. In contrast to single particle densities, the spatially resolved two-particle correlation functions vary with time and allow to determine the phase within a period. As in the case of the suspensions, motion in the state with low diffusivity is essentially reversible, whereas in the state with strong diffusion it is not.Comment: 12 pages, 13 figures; Supplemental Movies: https://youtu.be/oFcrWo9Vs6E, https://youtu.be/tcowb7o05JQ, https://youtu.be/GkEUwycn7V4, https://youtu.be/k-XCo8CWFU

    Consumer Class Actions

    Get PDF

    On statistically stationary homogeneous shear turbulence

    Full text link
    A statistically stationary turbulence with a mean shear gradient is realized in a flow driven by suitable body forces. The flow domain is periodic in downstream and spanwise directions and bounded by stress free surfaces in the normal direction. Except for small layers near the surfaces the flow is homogeneous. The fluctuations in turbulent energy are less violent than in the simulations using remeshing, but the anisotropy on small scales as measured by the skewness of derivatives is similar and decays weakly with increasing Reynolds number.Comment: 4 pages, 5 figures (Figs. 3 and 4 as external JPG-Files

    High-temperature liquid-mercury cathodes for ion thrusters Quarterly progress report, 1 Dec. 1966 - 28 Feb. 1967

    Get PDF
    High temperature liquid mercury cathodes for ion thrusters - thermal design analysi

    Anomalous power law of quantum reversibility for classically regular dynamics

    Get PDF
    The Loschmidt Echo M(t) (defined as the squared overlap of wave packets evolving with two slightly different Hamiltonians) is a measure of quantum reversibility. We investigate its behavior for classically quasi-integrable systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2 depending solely on the dimension d of the system. This power law decay is faster than the result ~ t^{-d} for the decay of classical phase space densities
    corecore