37 research outputs found

    Identification of serum biomarkers in dogs naturally infected with <i>Babesia canis canis</i> using a proteomic approach

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Canine babesiosis is a tick-borne disease that is caused by the haemoprotozoan parasites of the genus Babesia. There are limited data on serum proteomics in dogs, and none of the effect of babesiosis on the serum proteome. The aim of this study was to identify the potential serum biomarkers of babesiosis using proteomic techniques in order to increase our understanding about disease pathogenesis.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Serum samples were collected from 25 dogs of various breeds and sex with naturally occurring babesiosis caused by B. canis canis. Blood was collected on the day of admission (day 0), and subsequently on the 1st and 6th day of treatment.&lt;p&gt;&lt;/p&gt; Two-dimensional electrophoresis (2DE) of pooled serum samples of dogs with naturally occurring babesiosis (day 0, day 1 and day 6) and healthy dogs were run in triplicate. 2DE image analysis showed 64 differentially expressed spots with p ≀ 0.05 and 49 spots with fold change ≄2. Six selected spots were excised manually and subjected to trypsin digest prior to identification by electrospray ionisation mass spectrometry on an Amazon ion trap tandem mass spectrometry (MS/MS). Mass spectrometry data was processed using Data Analysis software and the automated Matrix Science Mascot Daemon server. Protein identifications were assigned using the Mascot search engine to interrogate protein sequences in the NCBI Genbank database.&lt;p&gt;&lt;/p&gt; A number of differentially expressed serum proteins involved in inflammation mediated acute phase response, complement and coagulation cascades, apolipoproteins and vitamin D metabolism pathway were identified in dogs with babesiosis.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our findings confirmed two dominant pathogenic mechanisms of babesiosis, haemolysis and acute phase response. These results may provide possible serum biomarker candidates for clinical monitoring of babesiosis and this study could serve as the basis for further proteomic investigations in canine babesiosis

    Two major ruminant acute phase proteins, haptoglobin and serum amyloid A, as serum biomarkers during active sheep scab infestation

    Get PDF
    Two ruminant acute phase proteins (APPs), haptoglobin (Hp) and serum amyloid A (SAA), were evaluated as serum biomarkers (BMs) for sheep scab–a highly contagious ectoparasitic disease caused by the mite Psoroptes ovis, which is a major welfare and production threat worldwide. The levels of both APPs increased in serum following experimental infestation of sheep with P. ovis, becoming statistically significantly elevated from pre-infestation levels at 4 weeks post-infestation. Following successful treatment of infested sheep with an endectocide, Hp and SAA serum levels declined rapidly, with half lives of less than 3 days. In contrast, serum IgG levels which specifically bound the P. ovis-derived diagnostic antigen Pso o 2 had a half-life of 56 days. Taking into account pre-infestation serum levels, rapidity of response to infestation and test sensitivity at the estimated optimum cut-off values, SAA was the more discriminatory marker. These studies illustrated the potential of SAA and Hp to indicate current sheep scab infestation status and to augment the existing Pso o 2 serological assay to give disease-specific indications of both infestation and successful treatment

    Acute phase protein response in an experimental model of ovine caseous lymphadenitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caseous lymphadenitis (CLA) is a disease of small ruminants caused by <it>Corynebacterium pseudotuberculosis</it>. The pathogenesis of CLA is a slow process, and produces a chronic rather than an acute disease state. Acute phase proteins (APP) such as haptoglobin (Hp) serum amyloid A (SAA) and α<sub>1 </sub>acid glycoprotein (AGP) are produced by the liver and released into the circulation in response to pro-inflammatory cytokines. The concentration of Hp in serum increases in experimental CLA but it is not known if SAA and AGP respond in parallel or have differing response profiles.</p> <p>Results</p> <p>The concentration in serum of Hp, SAA and AGP in 6 sheep challenged with 2 × 10<sup>5 </sup>cells of <it>C. pseudotuberculosis </it>showed significant increases (P < 0.05) compared to 3 unchallenged control sheep. By day 7 post infection. (p.i.) the Hp and SAA concentrations reached mean (± SEM) values of 1.65 ± 0.21 g/L and 18.1 ± 5.2 mg/L respectively. Thereafter, their concentrations fell with no significant difference to those of the control sheep by day 18 p.i.. In contrast, the serum AGP concentration in infected sheep continued to rise to a peak of 0.38 ± 0.05 g/L on day 13 p.i., after which a slow decline occurred, although the mean concentration remained significantly higher (P < 0.05) than the control group up to 29 days p.i.. Specific IgG to phospholidase D of <it>C. pseudotuberculosis </it>became detectable at 11 days p.i. and continued to rise throughout the experiment.</p> <p>Conclusion</p> <p>The serum concentrations of Hp, SAA and AGP were raised in sheep in an experimental model of CLA. An extended response was found for AGP which occurred at a point when the infection was likely to have been transforming from an acute to a chronic phase. The results suggest that AGP could have a role as a marker for chronic conditions in sheep.</p

    Maternal undernutrition and the ovine acute phase response to vaccination

    Get PDF
    Background: The acute phase response is the immediate host response to infection, inflammation and trauma and can be monitored by measuring the acute phase proteins (APP) such as haptoglobin ( Hp) or serum amyloid A (SAA). The plane of nutrition during pregnancy is known to affect many mechanisms including the neuroendocrine and neuroimmune systems in neonatal animals but effects on the APP are unknown. To investigate this phenomenon the serum concentration of Hp and SAA was initially determined in non-stimulated lambs from 3 groups (n = 10/group). The dams of the lambs of the respective groups were fed 100% of requirements throughout gestation (High/High; HH); 100% of requirements for the first 65 d of gestation followed by 70% of requirements until 125 d from when they were fed 100% of requirements (High/Low; HL); 65% of liveweight maintenance requirements for the first 65 d gestation followed by 100% of requirements for the remainder of pregnancy ( Low/High; LH). The dynamic APP response in the lambs was estimated by measuring the concentration of Hp and SAA following routine vaccination with a multivalent clostridial vaccine with a Pasteurella component, Heptavac P (TM) following primary and secondary vaccination. Results: The Hp and SAA concentrations were significantly lower at the time of vaccination ( day 8-14) than on the day of birth. Vaccination stimulated the acute phase response in lambs with increases found in both Hp and SAA. Maternal undernutrition led to the SAA response to vaccination being significantly lower in the HL group than in the HH group. The LH group did not differ significantly from either the HH or HL groups. No significant effects of maternal undernutrition were found on the Hp concentrations. A significant reduction was found in all groups in the response of SAA following the second vaccination compared to the response after the primary vaccination but no change occurred in the Hp response. Conclusion: Decreased SAA concentrations, post-vaccination, in lambs born to ewes on the HL diet shows that maternal undernutrition prior to parturition affects the innate immune system of the offspring. The differences in response of Hp and SAA to primary and secondary vaccinations indicate that the cytokine driven APP response mechanisms vary with individual AP

    Blood gas and serum biochemical RIs for healthy newborn Murrah buffaloes (Bubalus bubalis)

    Get PDF
    Background: There is a lack of published work on RIs for newborn buffaloes. Establishing blood gas and serum biochemical RIs for newborn buffaloes is important for monitoring health. Objectives: This study establishes blood gas and serum biochemical RIs of newborn buffaloes. Methods: Twenty‐eight newborn buffaloes, 10–30 days old, were selected. Thirty blood biochemical variables were analyzed. The Anderson–Darling test was used to assess the normality of the distribution. The Dixon test and the Tukey test were used to identify outliers. The RI and 90% CI were determined using standard and robust methods and the Box–Cox transformation. Results: A total of 30 RIs for healthy buffalo calves have been reported in this study. RIs for blood gas variables were reported for pH, partial pressure of oxygen (pO2), partial pressure of carbon dioxide (pCO2), saturation of O2 (SO2), bicarbonate (cHCO3−), base excess (BE), total carbon dioxide (ctCO2), and anion gap (AG). RIs for serum biochemical variables were reported for glucose (GLU), direct bilirubin (DB), total bilirubin (TB), AST, ALP, GGT, CK, LDH, creatinine (CREA), urea, cholesterol (CHOL), triglycerides (TG), Ca, P, Mg, Na, K, iCa, Cl, iron, total protein (TP), and albumin (ALB). Conclusions: This is the first reported study covering complete serum chemistry and blood gas RIs for healthy 1‐month‐old Murrah buffaloes

    Measuring the impact of dietary supplementation with citrus or cucumber extract on chicken gut microbiota using 16s rRNA gene sequencing

    Get PDF
    This study investigated the effects of dietary supplements, citrus (CTS) and cucumber (CMB), on the jejunum and cecum microbiota of 14- and 28-days old broiler chickens to evaluate their impact on the gut health and assess their role as alternatives to antibiotic growth promoters (ABGPs). 16SrRNA gene sequencing revealed the overall bacterial microbiota composition was significantly affected by the gut site (p?&lt;?0.001) but not by either of the dietary supplements, CTS and CMB, at both 14 and 28 days of age. However, as a result of Linear discriminant analysis (LDA) effect size (LEfSE), CTS dietary supplements significantly increased the counts of Lactobacillus (p?&lt;?0.01) and decreased the counts of Enterococcus (p?&lt;?0.01) and Clostridium (p?&lt;?0.05) in the jejunum, whereas the counts of Blautia were increased (p?&lt;?0.01) and Enterococcus were decreased (p?&lt;?0.05) in the cecum at both ages. Only minor CMB effects were identified in the cecum and non in the jejunum. The use of CTS dietary supplements has been shown to be associated to the reduction of potentially pathogenic bacteria (Enterococcus and Clostridium) and to the growth of beneficial bacteria (Lactobacillus and Blautia) which are known to have positive effects on chicken health in terms of nutrients absorption, stimulation and production of short chain fatty acids (SCFAs). Therefore, this study suggests that the use of a CTS supplemented diet could promote gut health while no clear advantages have been identified with the use of CMB as a dietary supplement

    Pig α<sub>1</sub>-Acid Glycoprotein: Characterization and First Description in Any Species as a Negative Acute Phase Protein.

    Get PDF
    The serum protein α1-acid glycoprotein (AGP), also known as orosomucoid, is generally described as an archetypical positive acute phase protein. Here, porcine AGP was identified, purified and characterized from pooled pig serum. It was found to circulate as a single chain glycoprotein having an apparent molecular weight of 43 kDa by SDS-PAGE under reducing conditions, of which approximately 17 kDa were accounted for by N-bound oligosaccharides. Those data correspond well with the properties of the protein predicted from the single porcine AGP gene (ORM1, Q29014 (UniProt)), containing 5 putative glycosylation sites. A monoclonal antibody (MAb) was produced and shown to quantitatively and specifically react with all microheterogenous forms of pig AGP as analyzed by 2-D electrophoresis. This MAb was used to develop an immunoassay (ELISA) for quantification of AGP in pig serum samples. The adult serum concentrations of pig AGP were in the range of 1-3 mg/ml in a number of conventional pig breeds while it was lower in Göttingen and Ossabaw minipigs (in the 0.3 to 0.6 mg/ml range) and higher in young (2-5 days old) conventional pigs (mean: 6.6 mg/ml). Surprisingly, pig AGP was found to behave as a negative acute phase protein during a range of experimental infections and aseptic inflammation with significant decreases in serum concentration and in hepatic ORM1 expression during the acute phase response. To our knowledge this is the first description in any species of AGP being a negative acute phase protein

    Expression of selected genes isolated from whole blood, liver and obex in lambs with experimental classical scrapie and healthy controls, showing a systemic innate immune response at the clinical end-stage

    Get PDF
    Abstract Background Incubation period, disease progression, pathology and clinical presentation of classical scrapie in sheep are highly dependent on PRNP genotype, time and route of inoculation and prion strain. Our experimental model with pre-colostrum inoculation of homozygous VRQ lambs has shown to be an effective model with extensive PrPSc dissemination in lymphatic tissue and a short incubation period with severe clinical disease. Serum protein analysis has shown an elevation of acute phase proteins in the clinical stages of this experimental model, and here, we investigate changes in gene expression in whole blood, liver and brain. Results The animals in the scrapie group showed severe signs of illness 22 weeks post inoculation necessitating euthanasia at 23 weeks post inoculation. This severe clinical presentation was accompanied by changes in expression of several genes. The following genes were differentially expressed in whole blood: TLR2, TLR4, C3, IL1B, LF and SAA, in liver tissue, the following genes differentially expressed: TNF-α, SAA, HP, CP, AAT, TTR and TF, and in the brain tissue, the following genes were differentially expressed: HP, CP, ALB and TTR. Conclusions We report a strong and evident transcriptional innate immune response in the terminal stage of classical scrapie in these animals. The PRNP genotype and time of inoculation are believed to contribute to the clinical presentation, including the extensive dissemination of PrPSc throughout the lymphatic tissue

    Changes in biochemical analytes in female dogs with subclinical Ancylostoma spp. infection

    Get PDF
    Background: Ancylostoma spp. is one of the most prevalent canine intestinal nematode infections which usually causes subclinical disease in adult dogs and has zoonotic implications. Therefore, the aim of this study was to explore and evaluate the possible pathophysiological changes that Ancylostoma spp. could produce in female dogs naturally infected but without clinical signs of disease, by screening a wide variety of biochemical markers for potential changes. Samples of feces and blood of 45 dogs were collected and fecal flotation and zinc sulphate centrifugal flotation were performed. The biochemical analytes determined were: the acute-phase proteins C-reactive protein (CRP) and haptoglobin (Hp); the lipid profile (cholesterol, triglycerides, HDL, LDL); the serum iron profile: iron, unsaturated iron binding-capacity (UIBC), and ferritin; the enzyme butyrylcholinesterase (BChe); the pancreatic profile: amylase, lipase, and trypsin-like immunoreactivity (TLI); the oxidative stress markers: total antioxidant capacity (TAC) and paraoxonase −1 (PON-1), along with total protein, albumin, and insulin-like growth factor – 1 (IGF – 1). Ancylostoma spp. eggs were detected in 29/45 dogs (64.4 %). Dogs were divided into two groups according to the results of fecal flotation methods. Group 1: negative fecal floatation (n = 16), and Group 2: subclinical infection with the observation of Ancylostoma spp. type eggs/x 40 objective fields (n = 29). Results: Mann–Whitney U test was used to compare the biochemical analyte results between the two groups (P &lt; 0.05). Significant increases in CRP (ÎŒg/mL) (median): non-infected dogs: 5.5; subclinically infected dogs 18.7; P = 0.03, Hp (g/L) (median): G1: 2.4; G2: 3.3; P = 0.03, and UIBC (ÎŒg/dL) (median): non-infected dogs: 139.4; subclinically infected dogs: 216; P = 0.0015, and significantly decreased iron (ÎŒg/dL) (median): non-infected dogs: 202.5; subclinically infected dogs: 125.7; P = 0.0041, IGF-1 (ng/mL) (median): non-infected dogs: 224; subclinically infected dogs: 123; P = 0.02, and albumin (g/dL) (median): non-infected dogs: 2.8; subclinically infected dogs: 2.5; P = 0.04 concentrations were observed in dogs with subclinical Ancylostoma spp. infection when compared to non-infected dogs. Conclusion: These findings provide an overview of the biochemical effects produced by patent Ancylostoma spp. in naturally infected dogs without any evident clinical signs of disease, which could be considered in differential diagnosis, especially in an endemic area for this parasite
    corecore