1,841 research outputs found
Recommended from our members
Perioperative Neurocognitive Disorder: State of the Preclinical Science.
The purpose of this article is to provide a succinct summary of the different experimental approaches that have been used in preclinical postoperative cognitive dysfunction research, and an overview of the knowledge that has accrued. This is not intended to be a comprehensive review, but rather is intended to highlight how the many different approaches have contributed to our understanding of postoperative cognitive dysfunction, and to identify knowledge gaps to be filled by further research. The authors have organized this report by the level of experimental and systems complexity, starting with molecular and cellular approaches, then moving to intact invertebrates and vertebrate animal models. In addition, the authors' goal is to improve the quality and consistency of postoperative cognitive dysfunction and perioperative neurocognitive disorder research by promoting optimal study design, enhanced transparency, and "best practices" in experimental design and reporting to increase the likelihood of corroborating results. Thus, the authors conclude with general guidelines for designing, conducting and reporting perioperative neurocognitive disorder rodent research
Propofol inhibits prokaryotic voltage-gated Na+ channels by promoting activation-coupled inactivation
Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 μM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation. © 2018 Yang et al
Stereoselectivity of Isoflurane in Adhesion Molecule Leukocyte Function-Associated Antigen-1
Background: Isoflurane in clinical use is a racemate of S- and R-isoflurane. Previous studies have demonstrated that the effects of S-isoflurane on relevant anesthetic targets might be modestly stronger (less than 2-fold) than R-isoflurane. The X-ray crystallographic structure of the immunological target, leukocyte function-associated antigen-1 (LFA-1) with racemic isoflurane suggested that only S-isoflurane bound specifically to this protein. If so, the use of specific isoflurane enantiomers may have advantage in the surgical settings where a wide range of inflammatory responses is expected to occur. Here, we have further tested the hypothesis that isoflurane enantioselectivity is apparent in solution binding and functional studies. Methods: First, binding of isoflurane enantiomers to LFA-1 was studied using 1-aminoanthracene (1-AMA) displacement assays. The binding site of each enantiomer on LFA-1 was studied using the docking program GLIDE. Functional studies employed the flow-cytometry based ICAM binding assay. Results: Both enantiomers decreased 1-AMA fluorescence signal (at 520 nm), indicating that both competed with 1-AMA and bound to the αL I domain. The docking simulation demonstrated that both enantiomers bound to the LFA-1 “lovastatin site.” ICAM binding assays showed that S-isoflurane inhibited more potently than R-isoflurane, consistent with the result of 1-AMA competition assay. Conclusions: In contrast with the x-ray crystallography, both enantiomers bound to and inhibited LFA-1. S-isoflurane showed slight preference over R-isoflurane
What went wrong? The flawed concept of cerebrospinal venous insufficiency
In 2006, Zamboni reintroduced the concept that chronic impaired venous outflow of the central nervous system is associated with multiple sclerosis (MS), coining the term of chronic cerebrospinal venous insufficiency ('CCSVI'). The diagnosis of 'CCSVI' is based on sonographic criteria, which he found exclusively fulfilled in MS. The concept proposes that chronic venous outflow failure is associated with venous reflux and congestion and leads to iron deposition, thereby inducing neuroinflammation and degeneration. The revival of this concept has generated major interest in media and patient groups, mainly driven by the hope that endovascular treatment of 'CCSVI' could alleviate MS. Many investigators tried to replicate Zamboni's results with duplex sonography, magnetic resonance imaging, and catheter angiography. The data obtained here do generally not support the 'CCSVI' concept. Moreover, there are no methodologically adequate studies to prove or disprove beneficial effects of endovascular treatment in MS. This review not only gives a comprehensive overview of the methodological flaws and pathophysiologic implausibility of the 'CCSVI' concept, but also summarizes the multimodality diagnostic validation studies and open-label trials of endovascular treatment. In our view, there is currently no basis to diagnose or treat 'CCSVI' in the care of MS patients, outside of the setting of scientific research
Impact of Cholesterol on Voids in Phospholipid Membranes
Free volume pockets or voids are important to many biological processes in
cell membranes. Free volume fluctuations are a prerequisite for diffusion of
lipids and other macromolecules in lipid bilayers. Permeation of small solutes
across a membrane, as well as diffusion of solutes in the membrane interior are
further examples of phenomena where voids and their properties play a central
role. Cholesterol has been suggested to change the structure and function of
membranes by altering their free volume properties. We study the effect of
cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC)
bilayers by means of atomistic molecular dynamics simulations. We find that an
increasing cholesterol concentration reduces the total amount of free volume in
a bilayer. The effect of cholesterol on individual voids is most prominent in
the region where the steroid ring structures of cholesterol molecules are
located. Here a growing cholesterol content reduces the number of voids,
completely removing voids of the size of a cholesterol molecule. The voids also
become more elongated. The broad orientational distribution of voids observed
in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a
distribution where orientation along the bilayer normal is favored. Our results
suggest that instead of being uniformly distributed to the whole bilayer, these
effects are localized to the close vicinity of cholesterol molecules
Propofol inhibits the voltage-gated sodium channel NaChBac at multiple sites.
Voltage-gated sodium (NaV) channels are important targets of general anesthetics, including the intravenous anesthetic propofol. Electrophysiology studies on the prokaryotic NaV channel NaChBac have demonstrated that propofol promotes channel activation and accelerates activation-coupled inactivation, but the molecular mechanisms of these effects are unclear. Here, guided by computational docking and molecular dynamics simulations, we predict several propofol-binding sites in NaChBac. We then strategically place small fluorinated probes at these putative binding sites and experimentally quantify the interaction strengths with a fluorinated propofol analogue, 4-fluoropropofol. In vitro and in vivo measurements show that 4-fluoropropofol and propofol have similar effects on NaChBac function and nearly identical anesthetizing effects on tadpole mobility. Using quantitative analysis by 19F-NMR saturation transfer difference spectroscopy, we reveal strong intermolecular cross-relaxation rate constants between 4-fluoropropofol and four different regions of NaChBac, including the activation gate and selectivity filter in the pore, the voltage sensing domain, and the S4-S5 linker. Unlike volatile anesthetics, 4-fluoropropofol does not bind to the extracellular interface of the pore domain. Collectively, our results show that propofol inhibits NaChBac at multiple sites, likely with distinct modes of action. This study provides a molecular basis for understanding the net inhibitory action of propofol on NaV channels. © 2018 Wang et al
Structural and Mechanistic Aspects of Copper Catalyzed Atom Transfer Radical Addition Reactions in the Presence of Reducing Agents
The focus of this dissertation was to improve the atom transfer radical addition (ATRA) by decreasing the amount of copper catalyst needed to achieve good yields of the monoadduct. This is a fundamental organic reaction in which an alkyl halide is added to the carbon-carbon double bond of an alkene via a free radical mechanism. Previously, ATRA required between 5 and 30 mol% of a copper catalyst relative to alkene in order to achieve good yields of the desired monoadduct due to the accumulation of copper(II) as a result of unavoidable radical termination reactions. The solution to this problem was found for the mechanistically similar atom transfer radical polymerization where the addition of a reducing agent served to continuously regenerate copper(I) in situ, allowing for the significant decrease in the amount of copper catalyst.
We utilized tris(2-pyridylmethyl)amine (TPMA) as a complexing ligand, due to its high activity in ATRA. Free radial initiator, 2, 2\u27-azobis(isobutyronitrile), was used as a reducing agent and were able to show that polyhalogenated methanes could be efficiently added across a variety of alkenes. Very low catalyst loadings were required for alkenes that do not readily undergo free radical polymerization such as α-olefins. However, significantly higher concentrations of copper catalyst were required for highly active alkenes such as styrene and methyl acrylate. In order to achieve better control of monoadduct formation in these systems, we utilized low temperature free radical initiator 2, 2\u27-azobis(4-methoxy-2, 4-dimethyl-valeronitrile), which was successful in providing good control over ATRA of methyl acrylate, methyl methacrylate, vinyl acetate and styrene with very low catalyst loadings.
To better understand the correlation between the structure of the copper complex and its activity in ATRA, copper complexes with the TPMA ligand were isolated and characterized with a variety of anions and auxiliary ligands. We observed that copper(I) TPMA complexes contained coordinated halide anions, which raised questions as to how coordinatively saturated complexes such as these could have such a high activity in an inner sphere electron transfer process such as ATRA. It was determined that ATRA with copper TPMA complexes most likely operates by partial ligand dissociation
Synapse efficiency diverges due to synaptic pruning following over-growth
In the development of the brain, it is known that synapses are pruned
following over-growth. This pruning following over-growth seems to be a
universal phenomenon that occurs in almost all areas -- visual cortex, motor
area, association area, and so on. It has been shown numerically that the
synapse efficiency is increased by systematic deletion. We discuss the synapse
efficiency to evaluate the effect of pruning following over-growth, and
analytically show that the synapse efficiency diverges as O(log c) at the limit
where connecting rate c is extremely small. Under a fixed synapse number
criterion, the optimal connecting rate, which maximize memory performance,
exists.Comment: 15 pages, 16 figure
Labilizing the Photoinert: Extraordinarily Facile Photochemical Ligand Ejection in an [Os(N^N)3]2+Complex
Whilst [Os(N^N)3]2+ complexes are supposed to be photochemically inert to ligand loss, the complex [Os(btz)3]2+ (btz=1,1′-dibenzyl-4,4′-bi-1,2,3-triazolyl) undergoes unprecedented photolytic reactivity to liberate free btz (Φ363≈1.2 %). Further, both cis and trans isomers of the photodechelated ligand-loss solvento intermediate [Os(κ2-btz)2(κ1-btz)(NCMe)]2+ are unambiguously observed and characterized by NMR spectroscopy and mass spectrometry
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
- …
