33 research outputs found

    Reengineering Metaphysics: Modularity, Parthood, and Evolvability in Metabolic Engineering

    Get PDF
    The premise of biological modularity is an ontological claim that appears to come out of practice. We understand that the biological world is modular because we can manipulate different parts of organisms in ways that would only work if there were discrete parts that were interchangeable. This is the foundation of the BioBrick assembly method widely used in synthetic biology. It is one of a number of methods that allows practitioners to construct and reconstruct biological pathways and devices using DNA libraries of standardized parts with known functions. In this paper, we investigate how the practice of synthetic biology reconfigures biological understanding of the key concepts of modularity and evolvability. We illustrate how this practice approach takes engineering knowledge and uses it to try to understand biological organization by showing how the construction of functional parts and processes can be used in synthetic experimental evolution. We introduce a new approach within synthetic biology that uses the premise of a parts-based ontology together with that of organismal self-organization to optimize orthogonal metabolic pathways in E. coli. We then use this and other examples to help characterize semisynthetic categories of modularity, parthood, and evolvability within the discipline.\ud \ud Part of a special issue, Ontologies of Living Beings, guest-edited by A. M. Ferner and Thomas Prade

    Microarray analysis of the in vivo sequence preferences of a minor groove binding drug

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minor groove binding drugs (MGBDs) interact with DNA in a sequence-specific manner and can cause changes in gene expression at the level of transcription. They serve as valuable models for protein interactions with DNA and form an important class of antitumor, antiviral, antitrypanosomal and antibacterial drugs. There is a need to extend knowledge of the sequence requirements for MGBDs from <it>in vitro </it>DNA binding studies to living cells.</p> <p>Results</p> <p>Here we describe the use of microarray analysis to discover yeast genes that are affected by treatment with the MGBD berenil, thereby allowing the investigation of its sequence requirements for binding <it>in vivo</it>. A novel approach to sequence analysis allowed us to address hypotheses about genes that were directly or indirectly affected by drug binding. The results show that the sequence features of A/T richness and heteropolymeric character discovered by <it>in vitro </it>berenil binding studies are found upstream of genes hypothesized to be directly affected by berenil but not upstream of those hypothesized to be indirectly affected or those shown to be unaffected.</p> <p>Conclusion</p> <p>The data support the conclusion that effects of berenil on gene expression in yeast cells can be explained by sequence patterns discovered by <it>in vitro </it>binding experiments. The results shed light on the sequence and structural rules by which berenil binds to DNA and affects the transcriptional regulation of genes and contribute generally to the development of MGBDs as tools for basic and applied research.</p

    CUREs in Biochemistry—Where We Are and Where We Should Go

    Get PDF
    Integration of research experience into classroom is an important and vital experience for all undergraduates. These course-based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward as well as a practical guide (supplementary material) are reported here

    Engineering bacteria to solve the Burnt Pancake Problem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the possibility of executing DNA-based computation in living cells by engineering <it>Escherichia coli </it>to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP). The BPP is solved by sorting a stack of distinct objects (pancakes) into proper order and orientation using the minimum number of manipulations. Each manipulation reverses the order and orientation of one or more adjacent objects in the stack. We have designed a system that uses site-specific DNA recombination to mediate inversions of genetic elements that represent pancakes within plasmid DNA.</p> <p>Results</p> <p>Inversions (or "flips") of the DNA fragment pancakes are driven by the <it>Salmonella typhimurium </it>Hin/<it>hix </it>DNA recombinase system that we reconstituted as a collection of modular genetic elements for use in <it>E. coli</it>. Our system sorts DNA segments by inversions to produce different permutations of a promoter and a tetracycline resistance coding region; <it>E. coli </it>cells become antibiotic resistant when the segments are properly sorted. Hin recombinase can mediate all possible inversion operations on adjacent flippable DNA fragments. Mathematical modeling predicts that the system reaches equilibrium after very few flips, where equal numbers of permutations are randomly sorted and unsorted. Semiquantitative PCR analysis of <it>in vivo </it>flipping suggests that inversion products accumulate on a time scale of hours or days rather than minutes.</p> <p>Conclusion</p> <p>The Hin/<it>hix </it>system is a proof-of-concept demonstration of <it>in vivo </it>computation with the potential to be scaled up to accommodate larger and more challenging problems. Hin/<it>hix </it>may provide a flexible new tool for manipulating transgenic DNA <it>in vivo</it>.</p

    The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

    Full text link
    Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students

    A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics

    Full text link
    There have been numerous calls to engage students in science as science is done. A survey of 90-plus faculty members explores barriers and incentives when developing a research-based genomics course. The results indicate that a central core supporting a national experiment can help overcome local obstacles

    Conserved DNA structures in origins of replication

    No full text

    Bacterial computing

    No full text
    corecore