35 research outputs found

    Structural connectivity of cytoarchitectonically distinct human left temporal pole subregions: a diffusion MRI tractography study

    Get PDF
    The temporal pole (TP) is considered one of the major paralimbic cortical regions, and is involved in a variety of functions such as sensory perception, emotion, semantic processing, and social cognition. Based on differences in cytoarchitecture, the TP can be further subdivided into smaller regions (dorsal, ventrolateral and ventromedial), each forming key nodes of distinct functional networks. However, the brain structural connectivity profile of TP subregions is not fully clarified. Using diffusion MRI data in a set of 31 healthy subjects, we aimed to elucidate the comprehensive structural connectivity of three cytoarchitectonically distinct TP subregions. Diffusion tensor imaging (DTI) analysis suggested that major association fiber pathways such as the inferior longitudinal, middle longitudinal, arcuate, and uncinate fasciculi provide structural connectivity to the TP. Further analysis suggested partially overlapping yet still distinct structural connectivity patterns across the TP subregions. Specifically, the dorsal subregion is strongly connected with wide areas in the parietal lobe, the ventrolateral subregion with areas including constituents of the default-semantic network, and the ventromedial subregion with limbic and paralimbic areas. Our results suggest the involvement of the TP in a set of extensive but distinct networks of cortical regions, consistent with its functional roles

    Simulating vortex ring collisions: extending the hybrid method

    No full text
    Vortex filaments are isolated tubes of vorticity, the behaviour of which is important to the understanding of the fluid flows they are found in. Vortex reconnection, the change in filament topology when filaments collide, is a particular phenomenon that cannot be modelled by the traditional vortex method, which leads (Ghuneim, 2002) to integrate it with the level set method. However, the computational complexity of this method's traditional implementation severly limits the types of simulations possible. Motivated by this, we propose a new level set implementation that stores voxels in a tree data structure such that neighborhood relationships are recursively encoded. We then modify the hybrid method to use this data structure, allowing for longer, more expansive, accurate and versatile filament evolutions. A simpler mechanism for handling reconnections is also proposed. We demonstrate the advantages of the extended hybrid method and the new level set implementation with simulations of a variety of laboratory filament evolutions with reconnection events.Les filaments de vortex sont des tubes de vorticité isolés, et il est important de comprendre leur comportement pour caractériser les fluides dans lesquels ils apparaissent. La reconnection de vortex, i.e. le changement de topologie qui survient lorsque des filaments entrent en collision, est un phénomène particulier qui ne peut être modelisé par la méthode traditionnelle des vortex, ce qui mène (Ghuneim, 2002, Ghuneim et al., 2002) à l'intégrer avec la méthode des ensembles de niveau. Cependant, la complexité de l'implémentation traditionnelle de la méthode des ensembles de niveau limite grandement le type de simulations qui sont possibles. Motivés par ceci, nous proposons une nouvelle implémentation qui organise les voxels dans une structure de données en arbre, ce qui permet des évolutions de filaments plus longues, plus étendues, plus précises et plus versatiles. Un méchanisme simplifié pour gérer les reconnections est aussi proposé. Nous démontrons les avantages de la méthode hybride étendue et de la nouvelle implémentation par ensembles de niveau par des simulations d'une variété d'évolutions de filaments avec des événements de reconnection

    Descriptive statistics, group comparisons, and effect sizes for individual NAB tests (demographically-adjusted T scores).

    No full text
    <p>Note: N = 62 (Uncomplicated MTBI, n = 31; Complicated MTBI, n = 31)</p><p>*Cohen’s [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0122746#pone.0122746.ref074" target="_blank">74</a>] effect size (d): small (.20), medium (.50), large (.80).</p><p>Descriptive statistics, group comparisons, and effect sizes for individual NAB tests (demographically-adjusted T scores).</p
    corecore