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Abstract

Objectives—The interhemispheric auditory pathway has been shown to play a crucial role in the 

processing of acoustic stimuli, and alterations of structural and functional connectivity between 

bilateral auditory areas are likely relevant to the pathogenesis of auditory verbal hallucinations 

(AVHs). The aim of this study was to examine this pathway in patients with chronic schizophrenia 

regarding their lifetime history of AVHs.

Methods—DTI scans were acquired from 33 healthy controls (HC), 24 schizophrenia patients 

with a history of AVHs (LT-AVH) and 9 schizophrenia patients without any lifetime-

hallucinations (N-LT-AVH). The interhemispheric auditory fibre bundles were extracted using 

streamline tractography. Subsequently, diffusivity indices, namely Fractional Anisotropy (FA), 

Trace, Mode, Axial and Radial Diffusivity, were calculated.
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Results—FA was decreased over the entire pathway in LT-AVH compared with N-LT-AVH. 

Moreover, LT-AVH displayed decreased FA and Mode as well as increased Radial Diffusivity in 

the midsagittal section of the fibre tract.

Conclusions—These findings indicate complex microstructural changes in the interhemispheric 

auditory pathway of schizophrenia patients with a history of AVHs. Alterations appear to be 

absent in patients who have never hallucinated.
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1. Introduction

Schizophrenia affects around 1% of the general population and patients afflicted with this 

disorder frequently present with heterogeneous symptoms, thus making it one of the most 

severe mental disorders for which we have no real understanding of the underlying aetiology 

and pathology (Frith and Johnstone 2003). Auditory verbal hallucinations (AVHs) rank 

among the most prominent and characteristic symptoms in schizophrenia (Schneider 1957) 

and describe the sensory experience of voices being heard in the absence of an appropriate 

external stimulus. As an explanation it has been suggested that patients with SZ exhibit a 

defect in self-monitoring and thus a failure to distinguish between internally and externally 

generated stimuli (Frith 1995). AVHs would therefore, originate from misattributing one’s 

own inner speech generated in the frontal cortex to an externally located source. 

Accordingly, increased activation in acutely hallucinating patients has been primarily 

observed in frontal speech production and temporal speech perception areas, including the 

auditory cortex (Dierks et al. 1999, Shergill et al. 2000a, Shergill et al. 2000b, van de Ven et 

al. 2005) with a predominance of the left hemisphere. Yet, cortical activations could also be 

observed in subjects’ right-sided cortical homologues (Dierks et al. 1999, Shergill 2000b). 

The findings of atypical function in different remote brain areas in hallucinating patients 

indicated that AVHs may be mediated by extensive cortical and subcortical disturbances 

within language-processing networks, rather than by focal impairments of single brain 

structures. This is in accordance with present concepts of SZ as the result of disturbed 

functional communication between spatially discrete, and not necessarily proximal, brain 

regions (Friston 2002). As a consequence, recent attention has been given to changes in 

distinct white matter (WM) tracts in SZ after structural neuroimaging studies had initially 

focused on grey matter abnormalities in schizophrenia (for reviews see Fitzsimmons et al. 

2013, Shenton et al. 2001). In fact, numerous Functional Magnetic Resonance Imaging 

(fMRI), volumetric imaging, and Positron Emission Tomography (PET) studies argue in 

favour of disordered cerebral connectivity in SZ (Andreasen et al. 1997, Bullmore et al. 

1997, Frith and Dolan 1996, McGuire and Frith 1996, Shergill et al. 2000b, Sigmundsson et 

al. 2001, Spence et al. 1997), yet they do not deliver information about fibre organization 

and microstructural changes in WM. In order to address these questions diffusion weighted 

imaging (DWI) techniques have been introduced providing a unique, non-invasive tool to 

assess alterations of WM in the brain. First introduced by Basser et al. in 1994, Diffusion 

Tensor Imaging (DTI) assesses the directionality of water diffusion within the brain. Since 

water molecules do not diffuse freely in WM but are guided by axonal tracts, cell 
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membranes, organelles, protein filaments and predominantly by myelin sheaths (Peled et al. 

1998) information about the microstructure of WM tracts can be gained in vivo (Cercignani 

& Horsfield 2001). Fractional Anisotropy (FA) represents the most commonly used 

parameter in DTI studies and measures the fraction of the diffusion tensor that can be 

ascribed to anisotropic diffusion, that is to say the degree of diffusion directionality. In the 

event of unrestricted isotropic diffusion FA has a value close to 0 while it approaches 1 if 

water molecules are strongly guided into one direction. Besides FA, some other diffusion 

indices have gained importance recently and may be helpful for more detailed evaluation of 

microstructural alterations. Measuring the total quantity of diffusion within one voxel, Trace 

is independent of fibre directionality and increases when the overall displacement of 

molecules rises. Another diffusion parameter, which has been developed lately, is 

represented by Mode. It provides geometric information about the shape of the diffusion 

tensor and approaches a value close to 1 if the diffusion tensor is shaped like a tube, i.e. 

when the size of the tensor’s second eigenvalue is close to the third. If the size of the second 

eigenvalue is close to the first and the diffusion is better described by a disk, Mode will 

converge a value of −1 (Ennis and Kindlmann 2006, Kindlmann et al. 2007, Whitford et al. 

2010).

Changes in FA can be better characterized by the assessment of Axial Diffusivity (Axial), 

which is defined as the principal eigenvalue, and Radial Diffusivity (Radial) reflecting the 

mean of the second and third eigenvalue of the diffusion tensor. Representing the major 

direction of the diffusion tensor, Axial has been reported to decrease when axonal injury 

occurs (Budde et al. 2009, Song et al. 2002). Its counterpart Radial reflects the diffusion 

perpendicular to the course of neural axons. Accordingly, Radial increases when the 

confining myelin sheaths are defective and it has been presented as a relatively reliable 

marker for de- and dysmyelination in animal models (Harsan et al. 2006, Song et al. 2003, 

Song et al. 2005, Tyszka et al. 2006).

In schizophrenia, several WM tracts have been reported to exhibit altered diffusion with 

decreased FA values as the most frequent finding (for review see Kubicki et al. 2007). 

Regarding AVHs, most studies have investigated fronto-temporal linkages between 

language production and perception structures such as the arcuate fasciculus.(Hubl et al. 

2004, Shergill et al. 2007). While the role of the arcuate fasciculus in speech perception and 

production is generally well established, there is increasing evidence for a substantial 

participation of the Corpus Callosum (CC) in the processing of auditory information. 

Findings from microscopic studies of the CC suggest that commissural fibre tracts from 

auditory areas in the temporal lobes are contained within the isthmus and the anterior part of 

the splenium (Aboitiz et al. 1992b), which are part of the caudal third of the CC. These 

interhemispheric connections have been demonstrated to link subregions of the primary and 

secondary auditory cortices in a tonotopic organisation (Aboitiz et al. 1992a, Bamiou et al. 

2007, Lee and Winer 2008, Pandya 1986). According to the “callosal relay” model which 

postulates supremacy of the left hemisphere in speech perception while auditory signals are 

more dominantly transmitted in the right hemisphere (Zaidel 1986), stimuli entering the 

right hemisphere must be transferred to the contralateral side for processing (Hugdahl et al. 

1997). Focussing on this physiological interhemispheric interplay, Friederici et al. (2007) 

observed the absence of an event-related N400 potential during a speech comprehension 
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task in patients with a lesion in the posterior third of the CC. Thus, the disruption of the CC 

in its posterior part is assumed to interfere with an efficient integration of prosodic and 

syntactic information contributing to disturbed language comprehension. Combining 

probabilistic tractography of callosal subregions containing interhemispheric auditory fibre 

tracts with an auditory speech perception task, it has also been shown that higher anatomical 

connectivity between superior temporal lobe areas correlated with better speech perception 

performance in healthy subjects (Westerhausen et al. 2009). Some evidence for the 

functional relevance of transcallosal auditory connectivity for AVHs in schizophrenia was 

provided by an EEG study investigating interhemispheric phase locking between the left and 

right primary auditory cortex (Mulert et al. 2011). SZ patients displayed reduced phase 

synchronization in comparison to HC suggesting disturbed connectivity in the 

interhemispheric auditory pathway. Moreover, there was a positive correlation between 

auditory hallucination symptoms and interhemispheric auditory connectivity. An important 

hint towards alterations of transcallosal auditory linkages in SZ patients with AVH was 

presented by a DTI study (Hubl et al. 2004) detecting increased FA values in the posterior 

third of the CC in acutely hallucinating patients. Based on these findings Mulert and 

colleagues (2012) were the first to explicitly investigate and demonstrate the 

interhemispheric auditory pathway by the means of DTI tractography. They observed 

increased FA in the traced fibre bundle in first-episode patients suffering from AVHs in 

comparison to patients without AVHs. Both of the above studies indicated stronger 

transcallosal connectivity in patients with acute AVH and we were henceforward interested 

in evaluating whether these alterations would also be present in chronic patients who have 

experienced AVHs during their illness history but were not necessarily hallucinating at the 

time of data acquisition. Briefly, our aim was to figure out if the increased FA values in 

first-episode patients are still present in chronic patients who experienced AVHs in the past 

and we therefore applied the same approach as Mulert et al. (2012). For a more detailed 

understanding of microstructural alterations we calculated we calculated Trace, Mode, Axial 

and Radial diffusivity in addition to FA.

Moreover, we aimed to analyse diffusion parameters in the midsagittal section of the fibre 

tract due to two different considerations. Firstly, we were interested in regarding our 

findings against the background of antecedent DTI studies examining interhemispheric 

connectivity. Most of them reported their results with reference to the median sagittal plane 

(e.g. Buchsbaum et al. 2006, Hubl et al. 2004, Knochel et al. 2012). Secondly and most 

importantly, we were aware of the fact that crossing or adjacent fibres tracts may interfere 

with the reconstruction of fibre bundles. Fractional anisotropy may be incorrectly low in a 

voxel covering crossing pathways and fibre tracking may consequently terminate in this 

region. Likewise, tracking can be shifted or switch to adjacent unrelated pathways when 

fibre merging or branching occurs (Mori 2007). Moreover, tractography has been shown to 

worsen if fibres run toward the lateral or inferior side of the brain due to partial volume and 

noise effects (Park et al. 2008). Since the interhemispheric auditory pathway leaves the CC 

with analogous orientation and since it passes several crossing tracts such as the internal 

capsule or the inferior longitudinal fasciculus, its tracking is especially interference-prone. 

The aforementioned limitations have been observed in recent DTI studies of callosal fibres 

connecting temporal regions of the left and right hemisphere (Hofer and Frahm 2006, 
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Vandermosten et al. 2013) and even though the traced streamlines in our study appeared to 

run in an anatomically correct course, we consequently expected clearer and less 

compromised diffusion values in the midsagittal section of the interhemispheric auditory 

pathway.

2. Materials and Methods

2.1 Subjects

This study was approved by the local ethics committee of the Ludwig Maximilian 

University of Munich and carried out in accordance with the Declaration of Helsinki. It was 

part of a larger clinical, imaging and genetics study at the Department of Psychiatry, Ludwig 

Maximilian University of Munich and DTI scans of our sample were already used for 

another study published recently (Clemm von Hohenberg et al. 2013). After a detailed 

description of the study, written informed consent was obtained from all participants.

Patients with schizophrenia—Patients with schizophrenia were recruited as outpatients 

affiliated with the Department of Psychiatry, Ludwig-Maximilians-University of Munich. 

All patients met DSM-IV and ICD-10 criteria for schizophrenia which was confirmed by 

four physicians and one psychologist using the Structured Clinical Interview for DSM-IV 

(SCID) (First et al. 1994, Spitzer et al. 1992, Williams et al. 1992) to evaluate lifetime Axis 

I and II diagnoses. Chronic schizophrenia was defined as lasting at least five years (mean 

16.58 years; range 5–34) following the inclusion criteria of recent studies (Knochel et al. 

2012, Liu et al. 2010). Handedness was determined by the clinical interview. All clinical 

data were double rated by a senior researcher who revised medical records and checked if 

patients’ statements were reasonable. None of the patients had a history of traumatic brain 

injury, mental retardation or neurological impairment. Additionally, none had substance 

abuse in the past six months. Prior to the six months period eleven patients had used 

cannabis and four patients had taken cocaine (not more than five times in their lifetime) 

Thirty-three patients met the aforementioned requirements.

Current psychopathology was assessed using the Positive and Negative Syndrome Scale 

“PANSS” (Kay et al. 1987). Moreover, information on current medication was employed to 

compute chlorpromazine (CPZ) equivalence doses as proposed by Möller (2000).

As it was our aim to investigate structural differences between schizophrenia patients with a 

history of auditory verbal hallucinations and patients who had never experienced any 

hallucinations, we used information from clinical interviews and chart records to divide the 

patient group into two subgroups. Hence, the group of patients without any lifetime 

hallucinations (N-LT-AVH) was comprised of nine SZ patients (eight men, one woman), 

whereas the LT-AVH group was comprised of twenty-four SZ patients (sixteen men, eight 

women). The mean age was 39.67 ± 3.39 years for N-LT-AVH and 43.50 ± 8.19 years for 

LT-AVH.

Healthy volunteers—Healthy control participants were drawn at random from the general 

population of Munich, Germany, and contacted by mail. Several screenings were conducted 

before volunteers were admitted to this study: a clinical interview including the SCID I and 
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SCID II to validate the absence of any lifetime psychotic disorder, an assessment of detailed 

medical and neuropsychiatric histories for both themselves and their first-degree relatives, 

the Family History Assessment Module (Rice et al. 1995) to rule out psychotic disorders 

among first-degree relatives, a neurological examination to exclude individuals with current 

central nervous system impairment and the Mini Mental Status Test (Folstein et al. 1975) 

with all volunteers who were older than 60 years to exclude subjects with cognitive 

impairment. Subjects were excluded if they had a history of drug dependence or abuse. 

Handedness was determined by the clinical interview. After the inclusion of all suitable SZ 

patients we selected 33 healthy control subjects from our data set who showed the best 

possible matching in terms of age, gender, education and handedness (twenty-four men, nine 

women; mean age = 44.97 ± 11.39 years).

2.2 Image Acquisition

All subjects were scanned on the same 1.5 Tesla MRI Scanner (Siemens Sonata, Siemens 

Medical Solutions, Erlangen, Germany) using a standard circular-polarized head coil. Brain 

Diffusion Tensor MRI was acquired in axial orientation using a diffusion-weighted single 

shot spin echo planar imaging (EPI) sequence. We obtained forty-four contiguous axial 

slices parallel to the anterior commissure – posterior commissure line covering the whole 

brain in a 128 × 112 scan matrix with diffusion encoding in 32 directions. Scan parameters 

were the following: FOV = 320 × 280; slice thickness = 2.5 mm; TE =83 ms; TR = 6600 

ms; b-values 0 and 1000s/mm2. All scans were visually checked to rule out structural 

abnormalities or artefacts.

Pre-processing—After conversion and visual inspection for severe scanning and motion 

artefacts, the diffusion-weighted images were corrected for motion and eddy-current 

distortions using affine registration with the baseline volume (FLIRT; Functional MRI of the 

Brain [FMRIB] Sofware Library [FSL]). Diffusion gradients were compensated for 

rotations. The images were masked to exclude non-brain areas by manually annotating a 

label map that was initialized using Otsu’s method and the DTI model was fitted using a 

linear least squares estimation as implemented in the 3D Slicer (www.slicer.org).

ROI definition—In order to extract only fibres that were part of the inter-hemispheric 

auditory pathway, a seeding tractography technique was applied that selects only those tracts 

that are included in a specific combination of regions of interest (ROIs) (Conturo et al. 1999, 

Mori et al. 1999). A single technician who was blind to diagnosis, age and gender drew all 

of these ROIs. In the first step, a midsagittal ROI was applied generously over the posterior 

third of the corpus callosum where auditory fibres are crossing. Subsequently, deterministic 

(streamline) tractography (Oh et al. 2007) was initiated from every voxel defined by this 

ROI following the direction of the principal eigenvector. A step size of 0.5 mm was 

employed with a radius of curvature > 0.87 mm. As soon as a voxel showed a lower value of 

fractional anisotropy than 0.15, tractography was terminated. In order to increase the number 

of resulting fibres, we applied Jitter ten times, which is an optional tool of the Slicer 

software package. Whereas tracts are seeded on a regular grid throughout the volume 

without this option, Jitter allows tractography from different, randomly chosen, seeding 

points providing higher quantities of resulting fibre tracts. The seed points are no longer 
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strictly defined by a spacing parameter on the stationary grid but moved haphazardly to half 

the distance of the original spacing distance. In a following step, a second ROI was drawn 

on a coronal slice bilaterally at the level of the splenium in order to select only fibres that 

were connecting the auditory areas of both hemispheres. If fibres failed to pass through this 

ROI they were excluded from further analysis. Fig. 1 shows the resulting auditory fibre tract 

passing through the CC from one representative subject as well as the different ROIs.

If a fibre that was clearly anatomically incorrect happened to remain in the resulting bundle 

(e.g. fibres of the corticospinal tract) the fibre was removed from the bundle using the 

“delete manually” function.

DTI measurements—Fractional anisotropy (FA) was calculated for every voxel through 

which any of the obtained fibres passed. Mean FA was calculated for every subject by 

averaging FA of these voxels (Basser and Pierpaoli 1996) whereupon the resulting value 

was applied in the statistical analysis. Moreover, Trace was calculated by summing the three 

eigenvalues in every voxel, thus measures the magnitude of the diffusion tensor. 

Additionally, we computed Mode at every voxel.

Since different combinations of eigenvalues can produce the same FA values, FA is not 

sufficient to fully describe the shape or distribution of diffusion in the brain (Alexander et al. 

2000, Alexander et al. 2007). Hence, two different indexes have been introduced to help 

discern further information about the microstructural processes: Axial and Radial 

Diffusivity. Axial Diffusivity describes the diffusivity along the principal axis and is simply 

generated by measuring the first eigenvalue, λ1. This index has been shown to decrease in 

cases of axonal degeneration, whereas Radial Diffusivity increases when pathologies of 

myelination occur (Seal et al. 2008, Song et al. 2003, Song et al. 2002).

Trace, Mode, Axial and Radial Diffusivity were only calculated in case of a significant 

change in FA. To ensure intra-rater reliability, five randomly chosen scans were duplicated 

and reprocessed by the first rater 6 months after the first rating. Mean FA was calculated and 

applied for computing the intra-class correlation coefficients revealing excellent reliability 

(intra-class correlation coefficient = .994). Inter-rater reliability was estimated by 

duplicating five randomly chosen brain volumes, which were then edited by two different 

independent raters 4 months after the first rating. Again, high reliability was detected (intra-

class correlation coefficient = .907).

We were specifically interested in examining the central callosal part of the interhemispheric 

auditory fibres without possible interference of diffusion in the peripheral sections. 

Therefore we used the tracts generated in the antecedent step to create a midsagittal label 

mask. This label mask was only defined by those voxels through which any of the produced 

auditory fibres passed. Again, FA was computed for every voxel and mean FA was 

calculated for each participant. All further analyses were repeated for the midsagittal section 

of the interhemispheric auditory pathway as described above in order to affirm possible 

findings and to further understand changes in the auditory pathway.
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2.3 Statistical Analysis

All analyses were performed in SPSS version 19 (www.spss.com) with a personal computer. 

The significance level was placed at α = 0.05 for statistical significant results and at α = 

0.10 for trend-wise effects in all analyses. Demographic variables were assessed using 

ANOVA and independent t-tests for the comparison of continuous variables (age, duration 

of illness, CPZ equivalent) and non-parametric procedures (Kruskal-Wallis- and Mann-

Whitney-U-tests) for variables with ordinal scale (education, PANSS scores). For the 

comparison of categorical variables chi-square tests (gender) or Fisher’s exact test 

(handedness; more than 20% of expected frequencies were less than 5) were applied.

All DTI parameters were checked for assumptions of normal distribution and equality of 

variances. If these assumptions were violated, non-parametric Kruskal-Wallis and Mann-

Whitney U tests were applied.

An analysis of variance was computed with diffusion values as dependent variables and 

group as a fixed factor (patients with a history of AVHs, patients without a history of AVHs, 

healthy controls). If (and only if) the ANOVA revealed a significant or trend-wise group 

difference, post-hoc pairwise comparisons (Fisher’s Least Significant Difference tests; 

Fisher’s LSD) were carried out within the ANOVA design. Group differences were also 

assessed for the number of traced fibres (streamlines).

Given the unequal group sizes and the small group size of N-LT-AVH in particular, we were 

apprehensive of the risk to erroneously believe that assumptions for parametric tests were 

not being violated. Therefore, we re-ran statistical analyses with non-parametric tests as 

well.

In order to control for other possibly influential variables, separate analyses of covariance 

(ANCOVAs) were conducted post-hoc for the following covariates: age, gender, education 

(to assess differences between all groups), duration of illness, CPZ equivalents and PANSS 

scores (to assess group differences between N-LT-AVH and LT-AVH).

We computed Pearson correlations to assess the relationship between DTI measurements 

and age or duration of illness, respectively, as well as Spearman Rank correlations to detect 

potential associations between the PANSS hallucination items and DTI values. In order to 

control for multiple comparisons false discovery rate (FDR) corrections were applied 

(Benjamini and Hochberg 1995).

3. Results

The demographic and clinical characteristics of the investigated samples are presented in 

table 1. There were no significant differences between the three groups in terms of age, 

gender or level of education. Table 2 displays means and standard deviations of diffusion 

indices as well as the results of the ANOVA and Kruskal-Wallis tests.

Interhemispheric auditory fibre bundle—The ANOVA revealed a trend-wise group 

difference [F(2,63) = 2.610, p = .081] for FA. Post-hoc tests revealed significantly 
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diminished FA values in LT-AVH compared to N-LT-AVH [mean FA = .463 ± .027 vs. .

490 ± .024; p = .026, d = 1.06]. The trend-wise overall group effect and the significant group 

difference between N(LT)AVH and (LT)AVH were confirmed when controlling for age, 

duration of illness, CPZ equivalents and PANSS scores in separate ANCOVAs. When 

controlling for education and gender the group effect narrowly missed the trend-level. None 

of the covariates was significantly related to FA.

No significant group differences were found in the comparison of HC to all SZ patients.

No significant associations were detected between diffusion values and age, duration of 

illness, psychopathological measures or chlorpromazine equivalents.

Midsagittal voxels of the interhemispheric auditory fibre bundle—When 

focusing only on the midsagittal voxels of the CC through which the auditory fibre bundles 

passed, the ANOVA revealed a significant group difference for FA [F(2,63) = 4.237; p = .

019] and Radial [F(2,63) = 3.245; p = .046]. Since the assumption of normal distribution 

was violated for Mode, we used the non-parametric Kruskal-Wallis test to assess group 

effects and detected a significant group difference for Mode [H(2) = 12.600; p = .002]. 

Group differences for FA and Radial were confirmed by Kruskal-Wallis tests as well.

Subsequent post-hoc analyses revealed significantly lower FA values in LT-AVH compared 

to N-LT-AVH [mean FA = .571 ± .080 vs. .641 ± .070; p = .013, d = .93]. FA was also 

significantly decreased in LT-AVH when compared with HC [mean FA = .613 ± .060; p = .

026, d = .60] (Fig. 2).

Concerning Mode, LT-AVH had significantly lower values in comparison to N-LT-AVH 

[mean Mode = 0.806 ± 0.091 vs. 0.893 ± 0.045; U = 47.0, p = .014, d = 1.21] and to HC 

[mean Mode = 0.885 ± 0.062; U = 191.0, p = .001, d = 1.01] as assessed by the non-

parametric Mann-Whitney U tests (Fig. 3).

In contrast, Radial diffusivity was considerably increased in LT-AVH compared to HC 

[mean Radial = .659 ± .142 vs. .575 ± .126; p = .023, d = .63] and marginally increased 

(statistical trend) when compared to N-LT-AVH [mean Radial = .560 ± .150; p = .066, d = .

68] (Fig. 4).

All observed group differences for FA and Mode were again detected in post-hoc 

ANCOVAs when controlling for age, gender, education, duration of illness, CPZ 

equivalents and PANSS scores, while none of the covariates was significantly related to 

diffusion measurements. Group differences for Radial were confirmed equally except when 

including education as a covariate.

No significant group differences were found in the comparison of HC to all SZ patients 

except for Mode [mean Mode = .885 ± .062 vs. .830 ± .090; U = 344.0, p = .010, d = .71]. 

The difference between HC and SZ patients showed a medium size effect (Cohen’s d = .71), 

while the differences between HC and LT-AVH (Cohen’s d = 1.01) and between N-LT-

AVH and LT-AVH (Cohen’s d = 1.21) both had a large size effect.
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After controlling for multiple comparisons none of the groups revealed a significant 

correlation between any of the diffusion indexes and age, duration of illness, CPZ 

equivalents or psychopathological measures of the PANSS score.

4. Discussion

The aim of this study was to investigate the relationship between microstructural processes 

in the interhemispheric auditory pathway and the occurrence of auditory hallucinations in 

chronic schizophrenia patients. It relates to a previous report of increased FA values in this 

fibre bundle in first-episode patients with AVH (Mulert et al. 2012). DTI scans were 

acquired and the transcallosal auditory fibre bundles were subsequently quantified by 

applying regions of interest and streamline tractography. We found decreased FA in patients 

with lifetime-AVHs, while patients without a history of AVHs revealed values similar to 

healthy control subjects. Moreover, hallucinating patients revealed decreased FA and Mode 

as well as increased Radial Diffusivity in the midsagittal section of the auditory callosal 

pathway.

Our findings of decreased anisotropy might seem conflicting in the context of the previous 

report of increased FA (Mulert et al. 2012) in the same anatomical region in hallucinating 

patients. Nevertheless, there is a major difference between patients in the two studies. While 

our previous study focussed on first-episode schizophrenia, patients in the present study had 

suffered from schizophrenia for a considerably longer time period (mean duration of illness 

= 16.58 years). Our current sample of participants was thus also considerably older than 

patients in the previous study (mean age of SZ = 42.45 vs. 26.9 years) as well as at a 

different stage of illness. Interestingly, most of the studies examining diffusion alterations in 

the CC report a decrease of FA in SZ patients who were much older than in Mulert’s study 

and had been suffering from SZ for a considerably longer period of time (Agartz et al. 2001, 

Foong et al. 2000, Knochel et al. 2012, Rotarska-Jagiela et al. 2008, Whitford et al. 2010).

While the interhemispheric pathway connecting temporal brain areas has already been 

investigated in regard to language perception, integration and phonological awareness 

(Dougherty et al. 2007, Friederici et al. 2007, Westerhausen et al. 2009), our findings 

suggest an association of microstructural changes in this fibre bundle with the occurrence of 

AVH. Identifying an association does not automatically constitute a causal relationship and 

due to the design of this study with only one fibre tract being analysed we are not in the 

position to deduce conclusions about the specificity of our findings. Nevertheless, the fact 

that N-LT-AVH revealed similar diffusion values to HC and that patients with lifetime AVH 

showed significant differences is well in line with previous studies (for review see 

Steinmann et al. 2014). While the two preceding DTI studies (Hubl et al. 2004, Mulert et al. 

2012) argued in favour of increased connectivity in hallucinating patients, evidence for 

decreased interhemispheric linkage derives from a study by Gavrilescu et al. (2010). Using 

fMRI authors observed significantly reduced interhemispheric connectivity between 

auditory cortices in patients with AVH when compared to patients without AVH and HC. 

Employing auditory assessments, McKay and colleagues (2000) observed significantly 

poorer results in hallucinating patients when compared to non-hallucinating patients and HC 

both in a speech perception and a dichotic speech test. Authors concluded consequently that 
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hallucinations may be associated with disruptions in the right auditory brain areas and/or 

dysfunction in interhemispheric connectivity. Similar conclusions were drawn in a recent 

EEG time revealing significantly increased interhemispheric transfer time values in patients 

with a history of AVH when single-syllable words were presented monaurally to each ear 

(Henshall et al. 2012). HC showed values close to zero and patients who had never 

experienced any hallucinations exhibited negative values. The prolonged interhemispheric 

transfer time in patients who had hallucinated in the past in comparison to patients without a 

history of AVH and HC may be attributed to abnormal cerebral lateralization in patients 

without a history of AVH or to dysfunctional transcallosal communication. The latter 

explanation is in well accordance with our finding of decreased interhemispheric 

connectivity in patients with a history of AVH.

Similar to Hubl’s (2004) and Mulert’s study (2012) there was no difference in FA between 

HC and patients with SZ when considered as one single group. The only diffusion parameter 

that revealed a group difference between HC and SZ patients was Mode with its values 

being significantly lower in SZ patients. When comparing effect sizes, the group difference 

between HC and SZ patients showed a medium size effect, while group differences both 

between (LT)AVH and HC and between (LT)AVH and N(LT)AVH had a large size effect, 

and we therefore assume that these group differences outweigh the group effect between HC 

and SZ patients. Consequently, altered transcallosal connectivity appears to be considerably 

associated with patients’ proneness to AVHs. Explanations for increased FA values in first-

episode patients with current AVH and decreased FA values in chronic patients with a 

history of AVH remain speculative, albeit WM changes in SZ appear to progress with time 

(Friedman et al. 2008, Mori et al. 2007, Rotarska-Jagiela et al. 2009).

Previous studies investigating the isthmus and splenium of the CC reported FA alterations in 

SZ (Agartz et al. 2001, Ardekani et al. 2003, Foong et al. 2000, Friedman et al. 2008, 

Knochel et al. 2012, Rotarska-Jagiela et al. 2008). In the present study, a more 

comprehensive examination of further diffusion parameters was performed investigating 

Trace, Mode, Axial and Radial Diffusivity, allowing for more precise conclusions about the 

microstructural sources of WM disruptions. Interestingly, decreased FA values in patients 

with lifetime-hallucinations were accompanied by increased Radial measures, while Axial 

Diffusivity was not different between groups. The combination of decreased FA, increased 

Radial and unchanged Axial Diffusivity has been observed in many DTI studies (Abdul-

Rahman et al. 2011, Seal et al. 2008, Whitford et al. 2010). FA reductions occur generally in 

response to myelin disruption, axonal loss, decreased fibre diameter or reduced fibre 

coherence (Beaulieu 2002, Cercignani and Horsfield 2001). In order to distinguish between 

these pathomechanisms, Radial Diffusivity has been introduced as a putative measure of 

myelination while Axial Diffusivity enables conclusions to be drawn about changes of the 

axonal membrane (Song et al. 2003, Song et al. 2002). Bearing in mind that diminished 

anisotropy in the context of increased Radial has been proposed to concur with 

demyelination and has been observed in SZ (Harsan et al. 2006, Levitt et al. 2012, Naismith 

et al. 2010, Song et al. 2005, Whitford et al. 2010), our findings may indicate myelin 

abnormalities in the interhemispheric auditory pathway of SZ patients with lifetime-

hallucinations. The proposed hypothesis of demyelination in SZ (Davis et al. 2003) has been 

supported by findings of abnormal or reduced oligodendrocytes in SZ (Flynn et al. 2003, 
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Hof et al. 2002, Hof et al. 2003, Uranova et al. 2007, Vostrikov et al. 2007), which represent 

that exact type of neuroglia responsible for creating the myelin sheath. Several studies also 

reported striking similarities between the disease patterns of schizophrenia and symptoms of 

demyelinating diseases such as metachromatic leukodystrophy (Black et al. 2003, Finelli 

1985, Hyde et al. 1992). Furthermore, gene expression analyses suggest an associated down-

regulation of oligodendroglial myelin-related genes in SZ (Aston et al. 2004, Hakak et al. 

2001, Haroutunian et al. 2007, McCullumsmith et al. 2007, Prabakaran et al. 2004, Roussos 

and Haroutunian 2014, Tkachev et al. 2003).

Additionally, our finding of decreased Mode in patients with lifetime-hallucinations 

describes a rather oblate-shaped diffusion, i.e. the size of the second eigenvalue is close to 

the first. Mode is independent of differences in FA has been found to decrease in the 

presence of fibre crossings (Douaud et al. 2007, Kindlmann et al. 2007). Its decline in the 

midsagittal section of the auditory pathway might be again explained by a potential loss of 

overall directionality in the investigated fibre tract. Since the major influence of callosal 

fibre bundles on the diffusion tensor might shrink in the course of neurodegenerative 

processes, diffusion in adjacent fibre tracts might interfere to a greater extent than usual, 

thus leading to the impression that the density of fibre crossings has risen. Although the 

midsagittal callosal slice represents an area where fibre crossings should at least in theory be 

absent, marginal voxels may cover adjacent WM tracts with orthogonal direction (e.g. the 

cingulum) whose directionality has stronger effects on the tensor when interhemispheric 

diffusion is hindered. Another possible explanation is that increased Radial and thus a 

greater second and third eigenvalue lead to a decrease of Mode. To test this consideration, 

we ran a post-hoc correlation analysis between Mode and Radial in all subjects and found 

indeed a highly significant negative association (Spearman’s rho = −.537, p < .001).

In a synoptic view of our study and preceding findings concerning interhemispheric auditory 

connectivity in SZ, we suggest that AVHs in schizophrenia are associated with 

microstructural alterations in the interhemispheric auditory pathway. These changes are still 

observable in chronic patients who are not necessarily hallucinating at the time of data 

acquisition. Alterations were found especially in the midsagittal section of the fibre bundle 

in patients that had experienced AVH in their lifetime when compared to N-LT-AVH and 

HC. Our findings of reduced FA and increased Radial indicate that abnormal transcallosal 

auditory connectivity in LT-AVH point to potential impairments in myelin sheaths.

Due to the cross-sectional design of our study we are not able to conclusively clarify the 

question whether structural differences between groups lead to patients’ propensity for 

hallucinations or if their psychopathology may in turn cause alterations in brain connectivity 

within the context of neural plasticity. Dynamic modifications in cerebral connections take 

place throughout adulthood in response to varied afferent input (Pascual-Leone et al. 2005) 

and as well as structural alterations may contribute to patients’ symptomatology it is also 

imaginable that the experience of symptoms may shape their cerebral microstructure. This 

question cannot be answered with our data, therefore, longitudinal studies including 

individuals at high risk for SZ are required in order to satisfactorily address this issue.
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A limitation of the present study is the small group size of patients without lifetime 

hallucinations. We addressed this deficiency via the application of non-parametric analyses 

confirming our findings; nevertheless, replication with increased and more homogeneous 

group sizes would be desirable. Furthermore, the two patient groups differed in the negative 

and total PANSS scores, which might have a relevant effect on our results. Post-hoc 

analyses of covariance with PANSS scores as additional covariates confirmed group 

differences for diffusion parameters while PANSS scores had no significant effect on any of 

the measurements but the possibility of an influential effect cannot be entirely excluded.

After antipsychotic treatment has been shown to be associated with brain volume reductions 

(Bartzokis et al. 2009, Christensen et al. 2004, Konopaske et al. 2008, Lieberman et al. 

2005, Wang et al. 2004) its influence on structural connectivity has been subject of a recent 

DTI study reporting FA reductions after 12 weeks of medication (Szeszko et al. 2014). 

However, authors could not exclude the possibility of disease progression that may account 

for their findings as well. While a long-term effect of psychotropic drugs on cerebral 

structures in our patient sample is quite imaginable their current medication does not seem 

to determine the group difference between N-LT-AVH and LT-AVH. The two groups did 

not differ significantly with regard to CPZ equivalents and the group difference remained 

significant when medication was included as a covariate. Moreover, FA changes have also 

been shown in unmedicated patients (Buchsbaum et al. 1998, Cheung et al. 2011, Gasparotti 

et al. 2009, Liu et al. 2013). Nevertheless, we are not able to fully distinguish the potential 

confounding influences of antipsychotic treatment on the observed group differences. The 

same applies to the lifetime history of substance abuse in SZ patients. While none of the 

participants took psychoactive substances during the past six months before data acquisition 

and none had a lifetime dependency, four N-LT-AVH and seven LT-AVH patients had 

taken substances in their past history. Longitudinal studies would be helpful to clarify these 

issues.

5. Conclusion

In summary, the present DTI study investigated WM alterations within the interhemispheric 

auditory pathway in chronic Schizophrenia patients and healthy controls, and detected a 

decrease of FA in patients with a history of AVHs. These findings were accompanied by 

increased Radial Diffusivity as well as decreased Mode, while patients without a history of 

hallucinations showed similar values to healthy control subjects. These results indicate that 

the interhemispheric auditory pathway may represent a WM structure participating in the 

pathogenesis of AVHs and that microstructural processes in LT-AVH, namely 

demyelination, may be responsible for the observed group differences.
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Figure 1. The interhemispheric auditory pathway
The orange fibres illustrate the interhemispheric auditory pathway while the blue fibres 

result from tractography of the entire CC. The midsagittal ROI (in blue) and coronal ROIs 

(in green) are depicted within the orange box.

Wigand et al. Page 20

World J Biol Psychiatry. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. FA (midsagittal)
Scatterplot illustrating the variations in FA between groups for the midsagittal slice of the 

interhemispheric auditory pathway. Significant difference between all groups (ANOVA; p 

= .019) and significantly diminished FA values in (LT)AVH compared to N(LT)AVH (t-

test; p = .029) and to HC (t-test; p = .027).

HC: healthy control subjects; N(LT)AVH: schizophrenic patients without lifetime-

hallucinations; (LT)AVH: schizophrenic patients with lifetime-hallucinations; FA: fractional 

anisotropy.

The black bars represent FA means and the asterisks represent significant between-group 

differences.
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Figure 3. Mode (midsagittal)
Scatterplot illustrating the variations in Mode between groups for the midsagittal slice of the 

interhemispheric auditory pathway. Significantly diminished Mode values in (LT)AVH 

compared to N(LT)AVH (t-test; p = .029) and to HC (t-test; p = .001).

HC: healthy control subjects; N(LT)AVH: schizophrenic patients without lifetime-

hallucinations; (LT)AVH: schizophrenic patients with lifetime-hallucinations.

The black bars represent Mode means and the asterisk represents the significant between-

group difference.
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Figure 4. Radial Diffusivity (midsagittal)
Scatterplot illustrating the variations in Radial Diffusivity between groups for the 

midsagittal slice of the interhemispheric auditory pathway. Significantly increased Radial 

Diffusivity values in (LT)AVH compared to HC (t-test; p = .021) and marginally increased 

values in (LT)AVH compared to N(LT)AVH (t-test; p = .089).

HC: healthy control subjects; N(LT)AVH: schizophrenic patients without lifetime-

hallucinations; (LT)AVH: schizophrenic patients with lifetime-hallucinations.

The black bars represent Radial means and the asterisk represents the significant between-

group difference.
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