4 research outputs found

    Synergy and Timing: A Concurrent Mass Medical Campaign Predicted to Augment Indoor Residual Spraying for Malaria

    Get PDF
    Background: Control programmes for high burden countries are tasked with charting effective multi-year strategies for malaria control within significant resource constraints. Synergies between different control tools, in which more than additive benefit accrues from interventions used together, are of interest because they may be used to obtain savings or to maximize health impact per expenditure. One commonly used intervention in sub-Saharan Africa is indoor residual spraying (IRS), typically deployed through a mass campaign. While possible synergies between IRS and long-lasting insecticide-treated nets (LLINs) have been investigated in multiple transmission settings, coordinated synergy between IRS and other mass medical distribution campaigns have not attracted much attention. Recently, a strong timing-dependent synergy between an IRS campaign and a mass drug administration (MDA) was theoretically quantified. These synergistic benefits likely differ across settings depending on transmission intensity and its overall seasonal pattern. Methods: High coverage interventions are modelled in different transmission environments using two methods: a Ross–Macdonald model variant and openmalaria simulations. The impact of each intervention strategy was measured through its ability to prevent host infections over time, and the effects were compared to the baseline case of deploying interventions in isolation. Results: By modelling IRS and MDA together and varying their deployment times, a strong synergy was found when the administered interventions overlapped. The added benefit of co-timed interventions was robust to differences in the models. In the Ross–Macdonald model, the impact compared was roughly double the sequential interventions in most transmission settings. Openmalaria simulations of this medical control augmentation of an IRS campaign show an even stronger response with the same timing relationship. Conclusions: The strong synergies found for these control tools between the complementary interventions demonstrate a general feature of effective concurrent campaign-style vector and medical interventions. A mass treatment campaign is normally short-lived, especially in higher transmission settings. When co-timed, the rapid clearing of the host parasite reservoir via chemotherapy is protected from resurgence by the longer duration of the vector control. An effective synchronous treatment campaign has the potential to greatly augment the impact of indoor residual spraying. Mass screening and treatment (MSAT) with highly sensitive rapid diagnostic tests may demonstrate a comparable trend while mass LLIN campaigns may similarly coordinate with MDA/MSAT

    Impact of population based indoor residual spraying with and without mass drug administration with dihydroartemisinin-piperaquine on malaria prevalence in a high transmission setting:a quasi-experimental controlled before-and-after trial in northeastern Uganda

    No full text
    Background: Declines in malaria burden in Uganda have slowed. Modelling predicts that indoor residual spraying (IRS) and mass drug administration (MDA), when co-timed, have synergistic impact. This study investigated additional protective impact of population-based MDA on malaria prevalence, if any, when added to IRS, as compared with IRS alone and with standard of care (SOC). Methods: The 32-month quasi-experimental controlled before-and-after trial enrolled an open cohort of residents (46,765 individuals, 1st enumeration and 52,133, 4th enumeration) of Katakwi District in northeastern Uganda. Consented participants were assigned to three arms based on residential subcounty at study start: MDA+IRS, IRS, SOC. IRS with pirimiphos methyl and MDA with dihydroartemisinin- piperaquine were delivered in 4 co-timed campaign-style rounds 8 months apart. The primary endpoint was population prevalence of malaria, estimated by 6 cross-sectional surveys, starting at baseline and preceding each subsequent round. Results: Comparing malaria prevalence in MDA+IRS and IRS only arms over all 6 surveys (intention-to-treat analysis), roughly every 6 months post-interventions, a geostatistical model found a significant additional 15.5% (95% confidence interval (CI): [13.7%, 17.5%], Z = 9.6, p = 5e−20) decrease in the adjusted odds ratio (aOR) due to MDA for all ages, a 13.3% reduction in under 5’s (95% CI: [10.5%, 16.8%], Z = 4.02, p = 5e−5), and a 10.1% reduction in children 5–15 (95% CI: [8.5%, 11.8%], Z = 4.7, p = 2e−5). All ages residents of the MDA + IRS arm enjoyed an overall 80.1% reduction (95% CI: [80.0%, 83.0%], p = 0.0001) in odds of qPCR confirmed malaria compared with SOC residents. Secondary difference-in-difference analyses comparing surveys at different timepoints to baseline showed aOR (MDA + IRS vs IRS) of qPCR positivity between 0.28 and 0.66 (p < 0.001). Of three serious adverse events, one (nonfatal) was considered related to study medications. Limitations include the initial non-random assignment of study arms, the single large cluster per arm, and the lack of an MDA-only arm, considered to violate equipoise. Conclusions: Despite being assessed at long time points 5–7 months post-round, MDA plus IRS provided significant additional protection from malaria infection over IRS alone. Randomized trials of MDA in large areas undergoing IRS recommended as well as cohort studies of impact on incidence. Trial registration: This trial was retrospectively registered 11/07/2018 with the Pan African Clinical Trials Registry (PACTR201807166695568)
    corecore