90 research outputs found

    Generating Master Faces for Use in Performing Wolf Attacks on Face Recognition Systems

    Get PDF
    Due to its convenience, biometric authentication, especial face authentication, has become increasingly mainstream and thus is now a prime target for attackers. Presentation attacks and face morphing are typical types of attack. Previous research has shown that finger-vein- and fingerprint-based authentication methods are susceptible to wolf attacks, in which a wolf sample matches many enrolled user templates. In this work, we demonstrated that wolf (generic) faces, which we call "master faces," can also compromise face recognition systems and that the master face concept can be generalized in some cases. Motivated by recent similar work in the fingerprint domain, we generated high-quality master faces by using the state-of-the-art face generator StyleGAN in a process called latent variable evolution. Experiments demonstrated that even attackers with limited resources using only pre-trained models available on the Internet can initiate master face attacks. The results, in addition to demonstrating performance from the attacker's point of view, can also be used to clarify and improve the performance of face recognition systems and harden face authentication systems.Comment: Accepted to be Published in Proceedings of the 2020 International Joint Conference on Biometrics (IJCB 2020), Houston, US

    Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos

    Get PDF
    Detecting manipulated images and videos is an important topic in digital media forensics. Most detection methods use binary classification to determine the probability of a query being manipulated. Another important topic is locating manipulated regions (i.e., performing segmentation), which are mostly created by three commonly used attacks: removal, copy-move, and splicing. We have designed a convolutional neural network that uses the multi-task learning approach to simultaneously detect manipulated images and videos and locate the manipulated regions for each query. Information gained by performing one task is shared with the other task and thereby enhance the performance of both tasks. A semi-supervised learning approach is used to improve the network's generability. The network includes an encoder and a Y-shaped decoder. Activation of the encoded features is used for the binary classification. The output of one branch of the decoder is used for segmenting the manipulated regions while that of the other branch is used for reconstructing the input, which helps improve overall performance. Experiments using the FaceForensics and FaceForensics++ databases demonstrated the network's effectiveness against facial reenactment attacks and face swapping attacks as well as its ability to deal with the mismatch condition for previously seen attacks. Moreover, fine-tuning using just a small amount of data enables the network to deal with unseen attacks.Comment: Accepted to be Published in Proceedings of the IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS) 2019, Florida, US

    Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos

    Get PDF
    Recent advances in media generation techniques have made it easier for attackers to create forged images and videos. State-of-the-art methods enable the real-time creation of a forged version of a single video obtained from a social network. Although numerous methods have been developed for detecting forged images and videos, they are generally targeted at certain domains and quickly become obsolete as new kinds of attacks appear. The method introduced in this paper uses a capsule network to detect various kinds of spoofs, from replay attacks using printed images or recorded videos to computer-generated videos using deep convolutional neural networks. It extends the application of capsule networks beyond their original intention to the solving of inverse graphics problems

    Identifying Computer-Translated Paragraphs using Coherence Features

    Get PDF
    We have developed a method for extracting the coherence features from a paragraph by matching similar words in its sentences. We conducted an experiment with a parallel German corpus containing 2000 human-created and 2000 machine-translated paragraphs. The result showed that our method achieved the best performance (accuracy = 72.3%, equal error rate = 29.8%) when it is compared with previous methods on various computer-generated text including translation and paper generation (best accuracy = 67.9%, equal error rate = 32.0%). Experiments on Dutch, another rich resource language, and a low resource one (Japanese) attained similar performances. It demonstrated the efficiency of the coherence features at distinguishing computer-translated from human-created paragraphs on diverse languages.Comment: 9 pages, PACLIC 201

    An Approach for Gait Anonymization Using Deep Learning

    Get PDF
    corecore