32 research outputs found

    Efectos de las condiciones de cultivo sobre el potencial bioenergético de rastrojo de maíz

    Get PDF
    Para determinar los efectos de cambios en la disponibilidad de agua y nitrógeno sobre el potencial energético del residuo de maíz y su calidad para ser utilizado para la generación de biogás, se sembró un híbrido de maíz en un diseño en bloques completos aleatorizados con tres repeticiones con dos niveles hídricos (secano y riego), y dos niveles de nitrógeno (0 y 120 kg/ha). Se determinó: rendimiento de biomasa vegetativa, contenido de nitrógeno, relación C/N, contenido energético, composición elemental (C, H, N, O) y rendimiento teórico de biogás de los residuos. Los residuos de maíz sin riego y con fertilización nitrogenada son aptos para producción de biogás al presentar una relación C/N adecuada. La combinación riego y fertilización eleva la relación C/N siendo necesaria la codigestión con otros sustratos para su uso eficiente.The aim of this study was to determine the effects of changes in the availability of water and nitrogen on the energy potential and quality of corn stover to be used as raw material for the generation of biogas. A maize hybrid was sowed in a randomized block design with three replications with two water levels (no irrigation and irrigation) and two nitrogen levels (0 and 120 kg/ha). The yield of vegetative biomass, nitrogen content, C/N ratio, energy content, elemental composition (C, H, N, O) and theoretical biogas yield were determined. The corn stover without irrigation and with nitrogen fertilization is suitable for (mono) digestion becaus it has an adequate C/N ratio. The combination of irrigation and fertilization raised the C/N ratio and codigestion with other substrates (animal excreta) would be necessary for efficient production of biogas.Fil: Erbetta, Elisa. Universidad Nacional de Cuyo. Facultad de Ciencias AgrariasFil: Rodríguez Elizagaray, Consuelo. Universidad Nacional de Cuyo. Facultad de Ciencias AgrariasFil: Hernández, Mariano. Universidad Nacional de Cuyo. Facultad de Ciencias AgrariasFil: Echarte, Laura. Consejo Nacional de Investigaciones Científicas y TécnicasFil: Echarte, Mercedes. Consejo Nacional de Investigaciones Científicas y Técnica

    Consumo y eficiencia en el uso de agua

    Get PDF
    En este capítulo se abordarán los aspectos determinantes del consumo de agua y de la eficiencia en el uso de la misma, con especial atención a la influencia de prácticas de manejo en ambientes contrastantes en disponibilidad hídrica.EEA BalcarceFil: Echarte, Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Echarte, Laura. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Echarte, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Otegui, María Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; Argentina.Fil: Otegui, María Elena. Universidad de Buenos Aires. Facultad de Agronomía; Argentina

    Estrategias de manejo agropecuario en escenarios de sequía

    Get PDF
    Las condiciones hídricas actuales en los partidos que conforman la región sudeste de Buenos Aires (Balcarce, Benito Juárez, Gral. Pueyrredon, Gral. Alvarado, La Madrid, Laprida, Lobería, Necochea, Olavarría, Tandil) son preocupantes. Desde abril de este año, excepto en julio, se han registrado lluvias mensuales menores a las que normalmente ocurren en todos los partidos. En particular, las precipitaciones de septiembre fueron extremadamente bajas (80% menores que lo que normalmente ocurre, en promedio de todos los partidos) y esta situación no ha ocurrido en los últimos 50 años en Balcarce, ni en los últimos 10 a 12 años para el resto de los partidos (excepto en Olavarría y Gral. Pueyrredon que presentaron lluvias similares a las de septiembre de este año, en el año 2015).EEA BalcarceFil: Lewczuk Nuria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Echarte, Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Puricelli, Marino. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Urcola, Hernán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Montoya, Marina Rosa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Faberi, Ariel Jesús. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Panaggio, Néstor Hernán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Gianelli, Valeria Rosana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Alonso, María Ángeles. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Divita, Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Mondino, Eduardo Ariel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Thougnon Islas, Andrea Julieta. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Tulli, María Celia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Sainz Rozas, Hernán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Abbate, Pablo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Cabral Farías, Carlos Alejando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Echarte, Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Bonelli, Lucas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Edwards Molina, Juan Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Recavarren, Paulo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Leaden, Kevin. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Cicore, Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Burges, Julio Cesar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Cantón, Germán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Borracci, Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Borracci, Sebastián Emilio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Agencia de Extensión Rural Otamendi; Argentina.Fil: Cambareri, Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Sallesses, Leonardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Gyenge, Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Fernández, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Agra, Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina

    Profiles of leaf senescence during reproductive growth of sunflower and maize

    Get PDF
    We investigated the effect of reproductive growth on the profiles of leaf senescence in maize (Zea mays L.) and sunflower (Helianthus annuus L.). Leaf senescence after flowering was assessed using both structural (leaf chlorophyll, nitrogen and dry matter) and functional (photosynthesis) variables in undisturbed plants (+G) and in plants in which grain set was prevented (-G). Two weeks after flowering, lack of grain accelerated senescence in maize and delayed senescence in sunflower as indicated by leaf chlorophyll; leaf nitrogen and dry matter were less sensitive response variables. Lack of interaction between reproductive treatment and leaf position indicates that the senescence signal, whatever its nature, was equally effective throughout the plant in both species. In both species, feedback inhibition of photosynthesis was first detected 30-35 d after flowering; excess carbohydrate in the leaves was therefore an unlikely trigger of accelerated senescence in maize. As reproductive development progressed, differences between +G and -G plants were more marked in sunflower, and tended to disappear or reverse in maize. In sunflower, interactions between leaf position and reproductive treatment - attributable to the local effect of grain - were detected around 20-27 d after flowering.Fil: Sadras, Victor Oscar. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Echarte, Laura. Universidad Nacional de Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Área de Investigación en Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Andrade, Fernando Héctor. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Changes in soil characteristics after six seasons of cereal–legume intercropping in the Southern Pampa

    Get PDF
    The Argentine Pampa is one of the most productive agricultural regions in the world, but sole crop management practices have led to soil degradation and losses of soil organic matter. The objective of this study was to evaluate soil organic carbon (SOC) and nitrogen (N) dynamics in 2007 and in 2012 in two intercrop systems [1:2 intercrop (one row of maize (Zea mays L.) and two rows of soybeans (Glycine max L. Merr.)) and 2:3 intercrop (two rows of maize and three rows of soybean)], and in a maize and soybean sole crop. Results showed that C and N input from crop residues was significantly greater (P < 0.05) in the maize sole crop, followed by the intercrops and the soybean sole crop. The land equivalent ratio (LER), based on crop biomass, was significantly greater (P < 0.05) in the 2:3 intercrop. Soil physical and chemical characteristics (bulk density, pH, SOC and N, C/N ratio) were not significantly (P < 0.05) different among treatments and were significantly greater in 2012, except for pH, at all depths. Gross SOC turnover time was significantly longer (P < 0.05) in 2012 compared to 2007 for all treatments and depths, except in the maize sole crop. Soil microbial biomass (SMB) C and N were significantly greater (P < 0.05) in the 2:3 intercrop in both years. To a 40 cm depth, SMB-C turnover time (SMB-CT) was significantly greater (P < 0.05) in the soybean sole crop followed by the intercrops and the maize sole crop in 2007, whereas in 2012, SMB-CT was significantly greater (P < 0.05) in the intercrops followed by the soybean and the maize sole crops. The soil light fraction N (LF-N) was significantly greater (P < 0.05) in the maize sole crop in both years. There was no significant difference (P < 0.05) for LF-C. Our results demonstrated that cereal–legume intercropping is a more sustainable agroecosystem land management practice in the Argentine Pampa, with respect to soil C and N transformations, compared to sole cropping.EEA BalcarceFil: Oelbermann, Maren. University of Waterloo. Department of Environment and Resource Studies; CanadáFil: Regehr, Alison. University of Waterloo. Department of Environment and Resource Studies; CanadáFil: Echarte, Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Maize transpiration efficiency increases with N supply or higher plant densities

    No full text
    Most of the studies addressing the influence of management practices on seasonal crop water use efficiency (i.e., the ratio between shoot biomass and evapotranspiration in a seasonal scale, WUE(B, ET, s)) have focused on their effect on evaporation. Processes specifically related to the crop transpiration component received less attention as possible mechanisms underlying WUE(B, ET, s) responses. In this study, we provide empirical evidence in support to theoretical predictions on how agronomic management practices such as N supply or plant density changes modify maize (Zea mays L.) transpiration efficiency for shoot biomass production (i.e., the ratio between shoot biomass and transpiration in a seasonal scale, WUE(B, T, s)); and determine the contribution of crop conductance (gc) and radiation use efficiency (RUEB) to the response of WUE(B, T, s) to these management practices. Maize crops were grown at Balcarce, Argentina during four seasons. Treatments included two rates of N (i.e., 120 kg N ha−1 or non-fertilized during Seasons 1 and 2) or three plant densities (4, 8 and 12 plants m−2 with no N limitations, during Seasons 3 and 4). Measurements comprised (i) soil water content, evaporation and intercepted photosynthetically active radiation (iPAR) during the whole crop season, and (ii) shoot dry matter at physiological maturity (PM). Crop evapotranspiration (ET) was calculated by means of a water balance and soil evaporation (E) was estimated with micro-lysimeters. Crop transpiration (T) was estimated as the difference between ET and E; RUEB and WUE(B, T, s) were estimated from the ratio between crop biomass at PM and seasonal iPAR or T, respectively; and gc was estimated as T/iPAR (mm MJ−1). Higher N supply and plant densities positively affected WUE(B, ET, s) of maize crops, by increasing WUE(B, T, s) (ca. 19% for N supply and 8–12% for plant density) in addition to decreasing soil water evaporation. Changes in WUE(B, T, s) due to N supply were accounted by RUEB changes while gc was the main trait contributing to WUE(B, T, s) response to plant density. Crop conductance significantly decreased with maximum LAI increments up to 3.9. This work highlights the importance of considering crop conductance changes in response to management practices such as changing plant density.EEA BalcarceFil: Hernández, Mariano D. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Alfonso, Cecilia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Echarte, María Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Echarte, María Mercedes. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Cerrudo, Aníbal Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Cerrudo, Aníbal Alejandro. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Echarte, Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Echarte, Laura. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina

    Elevated carbon dioxide and temperature effects on soil properties from sole crops and intercrops

    No full text
    Climate change is associated with more intense phases of heat, drought or precipitation that can have a negative impact on soil properties. Our goal was to understand if elevated CO2 (eCO2) and temperature (eT), and a multicomponent (eCO2eT) climate effect will influence soil properties from cereal-legume intercrops differently compared to sole crops. We hypothesized that cereal-legume intercrops can regulate climate effects, causing soil properties and greenhouse gas fluxes to be similar to ambient climate conditions. eT and eCO2eT decreased soil organic carbon (C) (p =.001) and nitrogen (N) (p =.003) but increased (p =.011) soil nitrate in all crop systems, compared to ambient conditions. For crop systems, soil ammonium was lower (p =.001) with all climate effects, but nitrate was greater (p =.011) with eCO2 and eCO2eT compared to ambient conditions. The microbial community had a preferential (p =.024) consumption of C3 sources in the sole crops. Climate effects also influenced how C and N were accessed by microbes in all crop systems, shifting (p =.001) species richness and microbial community structure. CO2 fluxes were greater (p =.001) with eT and eCO2, whereas N2O fluxes were greater (p =.005) with eCO2 and eCO2eT. However, greenhouse gas fluxes from the intercrop were similar between eT or eCO2eT and ambient conditions. For soil properties, we rejected our hypothesis since cereal-legume intercrops did not have an advantage over sole crops to cope with single- and multicomponent climate effects, but we partially accepted our hypothesis since greenhouse gas fluxes were similar between AMB and eT or eCO2eT.Fil: Oelbermann, Maren. University of Waterloo; CanadáFil: Morgan, Svenja. University of Waterloo; CanadáFil: Echarte, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentin

    Stover biogas potential of corn crops grown under contrasting water availability and nitrogen supply

    No full text
    Corn stover is a biogas feedstock capable of enhancing agriculture bioenergy potential. Although the influence of growing conditions on biogas yield of corn stover has been reported, the joint effects of water and nitrogen on biogas production potential have not been addressed. A two year experiment (Exp. 1 and Exp. 2) was conducted in Balcarce, Argentina to assess nitrogen supply effects on stover composition and potential methane yield of corn crops grown under contrasting water regimes. Treatments were a combination of two nitrogen fertilization doses (0 and 120 kg ha−1) and two water regimes (irrigated and rainfed). Biomass composition (mass closure procedure) was determined, a BMP test was carried out and first-order kinetic parameters were obtained. Interactive effects of nitrogen and water on stover composition were found. BMP tests showed that the biogas production rate (k) decreased upon irrigation while its response to nitrogen depended on water availability. Nitrogen supply decreased specific biogas potential (Bmax) independently of water availability. Methane yield increased with nitrogen fertilization under irrigation, while it decreased under rainfed conditions. The observed water and nitrogen supply interactive effects on stover yield, methane yield and biomass conversion efficiency highlights the importance of considering the joint effects of multiple factors when trying to assess the effects of the environment on biomass quality for bioenergy purposes.EEA BalcarceFil: Erbetta, Elisa: Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Erbetta, Elisa: Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Echarte, Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Echarte, Laura. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Rodríguez Elizagaray, Consuelo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Depetris, Gustavo Jesús. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Depetris, Gustavo Jesús. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Gabbanelli, Nadia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina.Fil: Gabbanelli, Nadia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina.Fil: Echarte, María Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina.Fil: Echarte, María Mercedes. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
    corecore