56 research outputs found

    Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L18802, doi:10.1029/2008GL034845.Cape Farewell, Greenland's southernmost point, is a region of significant interest in the meteorological and oceanographic communities in that atmospheric flow distortion associated with the high topography of the region leads to a number of high wind speed jets. The resulting large air-sea fluxes of momentum and buoyancy have a dramatic impact on the region's weather and ocean circulation. Here the first in-situ observations of the surface meteorology in the region, collected from an instrumented buoy, are presented. The buoy wind speeds are compared to 10 m wind speeds from the QuikSCAT satellite and the North American Regional Reanalysis (NARR). We show that the QuikSCAT retrievals have a high wind speed bias that is absent from the NARR winds. The spatial characteristics of the high wind speed events are also presented.The support of the Canadian Foundation for Climate and Atmospheric Science, the support of the National Science Foundation grant OCE-0450658as well as the Natural Environmental Research Council grant NE/C003365/1

    Retrieval of sea ice thickness distribution in the seasonal ice zone from air-borne L-band SAR

    Get PDF
    Although it is known that satellite data are useful for obtaining ice thickness distribution for perennial sea ice or in stable thin sea ice areas, it is still an unresolved issue for the seasonal sea ice zone (SIZ). In this study, we approach the problem of ice thickness retrieval by using L-band Synthetic Aperture Radar (SAR). In the SIZ, ice thickness growth is closely related to the ridging activity and therefore surface roughness is expected to be correlated with ice thickness. L-band SAR is suitable for detecting such surface roughness, and therefore is expected to be a good tool for obtaining thickness distribution. To verify this idea, we conducted ship-borne electromagnetic (EM) inductive sounding and supersonic profiling observations with an icebreaker, coordinated with airborne L-band SAR observations in the southern Sea of Okhotsk in February 2005. The surface elevation was estimated by representing the ship's motion with a low-pass filter. Backscattering coefficients correlated well with ice thickness and surface roughness, defined by standard deviation of surface elevation. This result sheds light on the possibility of determining ice thickness distribution in the SIZ

    Chemical evidence for the origin of the cold water belt along the northeastern coast of Hokkaido

    Get PDF
    In the southwestern Okhotsk Sea, the cold water belt (CWB) is frequently observed on satellite images offshore of the Soya Warm Current flowing along the northeastern coast of Hokkaido, Japan, during summertime. It has been speculated that the CWB is upwelling cold water that originates from either subsurface water of the Japan Sea off Sakhalin or bottom water of the Okhotsk Sea. Hydrographic and chemical observations (nutrients, humic-type fluorescence intensity, and iron) were conducted in the northern Japan Sea and southwestern Okhotsk Sea in early summer 2011 to clarify the origin of the CWB. Temperature-salinity relationships, vertical distributions of chemical components, profiles of chemical components against density, and the (NO3 + NO2)/PO4 relationship confirm that water in the CWB predominantly originates from Japan Sea subsurface water
    corecore