4,099 research outputs found

    Free Rota-Baxter algebras and rooted trees

    Full text link
    A Rota-Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota-Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota-Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota-Baxter algebras were obtained by Rota and Cartier in the 1970s and a third one by Keigher and one of the authors in the 1990s in terms of mixable shuffles. Recently, noncommutative Rota-Baxter algebras have appeared both in physics in connection with the work of Connes and Kreimer on renormalization in perturbative quantum field theory, and in mathematics related to the work of Loday and Ronco on dendriform dialgebras and trialgebras. This paper uses rooted trees and forests to give explicit constructions of free noncommutative Rota--Baxter algebras on modules and sets. This highlights the combinatorial nature of Rota--Baxter algebras and facilitates their further study. As an application, we obtain the unitarization of Rota-Baxter algebras.Comment: 23 page

    Rate-Constrained Wireless Networks with Fading Channels: Interference-Limited and Noise-Limited Regimes

    Full text link
    A network of nn wireless communication links is considered in a Rayleigh fading environment. It is assumed that each link can be active and transmit with a constant power PP or remain silent. The objective is to maximize the number of active links such that each active link can transmit with a constant rate λ\lambda. An upper bound is derived that shows the number of active links scales at most like 1λlog⁥n\frac{1}{\lambda} \log n. To obtain a lower bound, a decentralized link activation strategy is described and analyzed. It is shown that for small values of λ\lambda, the number of supported links by this strategy meets the upper bound; however, as λ\lambda grows, this number becomes far below the upper bound. To shrink the gap between the upper bound and the achievability result, a modified link activation strategy is proposed and analyzed based on some results from random graph theory. It is shown that this modified strategy performs very close to the optimum. Specifically, this strategy is \emph{asymptotically almost surely} optimum when λ\lambda approaches ∞\infty or 0. It turns out the optimality results are obtained in an interference-limited regime. It is demonstrated that, by proper selection of the algorithm parameters, the proposed scheme also allows the network to operate in a noise-limited regime in which the transmission rates can be adjusted by the transmission powers. The price for this flexibility is a decrease in the throughput scaling law by a multiplicative factor of log⁥log⁥n\log \log n.Comment: Submitted to IEEE Trans. Information Theor

    Rota-Baxter algebras and new combinatorial identities

    Full text link
    The word problem for an arbitrary associative Rota-Baxter algebra is solved. This leads to a noncommutative generalization of the classical Spitzer identities. Links to other combinatorial aspects, particularly of interest in physics, are indicated.Comment: 8 pages, improved versio

    Quantum Analogy of Poisson Geometry, Related Dendriform Algebras and Rota-Baxter Operators

    Full text link
    We will introduce an associative (or quantum) version of Poisson structure tensors. This object is defined as an operator satisfying a "generalized" Rota-Baxter identity of weight zero. Such operators are called generalized Rota-Baxter operators. We will show that generalized Rota-Baxter operators are characterized by a cocycle condition so that Poisson structures are so. By analogy with twisted Poisson structures, we propose a new operator "twisted Rota-Baxter operators" which is a natural generalization of generalized Rota-Baxter operators. It is known that classical Rota-Baxter operators are closely related with dendriform algebras. We will show that twisted Rota-Baxter operators induce NS-algebras which is a twisted version of dendriform algebra. The twisted Poisson condition is considered as a Maurer-Cartan equation up to homotopy. We will show the twisted Rota-Baxter condition also is so. And we will study a Poisson-geometric reason, how the twisted Rota-Baxter condition arises.Comment: 18 pages. Final versio

    Characterization of Rate Region in Interference Channels with Constrained Power

    Full text link
    In this paper, an nn-user Gaussian interference channel, where the power of the transmitters are subject to some upper-bounds is studied. We obtain a closed-form expression for the rate region of such a channel based on the Perron-Frobenius theorem. While the boundary of the rate region for the case of unconstrained power is a well-established result, this is the first result for the case of constrained power. We extend this result to the time-varying channels and obtain a closed-form solution for the rate region of such channels.Comment: 21 Pages, The Conference Version is Submitted to IEEE International Symposium on Information Theory (ISIT2007

    Time-ordering and a generalized Magnus expansion

    Get PDF
    Both the classical time-ordering and the Magnus expansion are well-known in the context of linear initial value problems. Motivated by the noncommutativity between time-ordering and time derivation, and related problems raised recently in statistical physics, we introduce a generalization of the Magnus expansion. Whereas the classical expansion computes the logarithm of the evolution operator of a linear differential equation, our generalization addresses the same problem, including however directly a non-trivial initial condition. As a by-product we recover a variant of the time ordering operation, known as T*-ordering. Eventually, placing our results in the general context of Rota-Baxter algebras permits us to present them in a more natural algebraic setting. It encompasses, for example, the case where one considers linear difference equations instead of linear differential equations

    Subdeterminant Maximization via Nonconvex Relaxations and Anti-concentration

    Full text link
    Several fundamental problems that arise in optimization and computer science can be cast as follows: Given vectors v1,
,vm∈Rdv_1,\ldots,v_m \in \mathbb{R}^d and a constraint family B⊆2[m]{\cal B}\subseteq 2^{[m]}, find a set S∈BS \in \cal{B} that maximizes the squared volume of the simplex spanned by the vectors in SS. A motivating example is the data-summarization problem in machine learning where one is given a collection of vectors that represent data such as documents or images. The volume of a set of vectors is used as a measure of their diversity, and partition or matroid constraints over [m][m] are imposed in order to ensure resource or fairness constraints. Recently, Nikolov and Singh presented a convex program and showed how it can be used to estimate the value of the most diverse set when B{\cal B} corresponds to a partition matroid. This result was recently extended to regular matroids in works of Straszak and Vishnoi, and Anari and Oveis Gharan. The question of whether these estimation algorithms can be converted into the more useful approximation algorithms -- that also output a set -- remained open. The main contribution of this paper is to give the first approximation algorithms for both partition and regular matroids. We present novel formulations for the subdeterminant maximization problem for these matroids; this reduces them to the problem of finding a point that maximizes the absolute value of a nonconvex function over a Cartesian product of probability simplices. The technical core of our results is a new anti-concentration inequality for dependent random variables that allows us to relate the optimal value of these nonconvex functions to their value at a random point. Unlike prior work on the constrained subdeterminant maximization problem, our proofs do not rely on real-stability or convexity and could be of independent interest both in algorithms and complexity.Comment: in FOCS 201
    • 

    corecore