11 research outputs found

    Expanding the clinical phenotype of IARS2-related mitochondrial disease.

    Get PDF
    BACKGROUND: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. METHODS: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. RESULTS: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. CONCLUSIONS: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia

    Severe rosacea: A case report

    Get PDF
    Purpose: To describe a case of severe rosacea with ocular involvement. Case Report: A 28-year-old female patient presented with extensive facial and ocular eruptions. She had a history of treatment with oral prednisolone due to the clinical diagnosis of lupus erythematosus (LE), which had resulted in transient improvement of the lesions, but was followed by exacerbation of the lesions. With the clinical diagnosis of severe oculofacial rosacea, she was successfully treated with oral doxycycline, steroid eye drops, and ocular lubricants. Histopathological features of skin biopsy were consistent with rosacea in the context of infection with Demodexfolliculorum. After four years, a relapse of the oculofacial lesions occurred, for which retreatment with oral tetracycline, steroid eye drops, and ocular lubricants was administered. Conclusion: Rosacea can be extremely severe and disfiguring, and it can be misdiagnosed as the pathognomonic butterfly rash of LE. Demodex carriage in rosacea is consistent and may play a significant role in the severe forms

    Optical Correction of Aphakia in Children

    No full text
    There are several reasons for which the correction of aphakia differs between children and adults. First, a child′s eye is still growing during the first few years of life and during early childhood, the refractive elements of the eye undergo radical changes. Second, the immature visual system in young children puts them at risk of developing amblyopia if visual input is defocused or unequal between the two eyes. Third, the incidence of many complications, in which certain risks are acceptable in adults, is unacceptable in children. The optical correction of aphakia in children has changed dramatically however, accurate optical rehabilitation and postoperative supervision in pediatric cases is more difficult than adults. Treatment and optical rehabilitation in pediatric aphakic patients remains a challenge for ophthalmologists. The aim of this review is to cover issues regarding optical correction of pediatric aphakia in children; kinds of optical correction , indications, timing of intraocular lens (IOL) implantation, types of IOLs, site of implantation, IOL power calculations and selection, complications of IOL implantation in pediatric patients and finally to determine the preferred choice of optical correction. However treatment of pediatric aphakia is one step on the long road to visual rehabilitation, not the end of the journey

    Two New Variants in FYCO1 Are Responsible for Autosomal Recessive Congenital Cataract in Iranian Population

    No full text
    The purpose of this experimental study was to investigate the genetic etiology of congenital cataract (CC) manifesting an autosomal recessive pattern of inheritance in four Iranian families. Affected individuals and their normal first-degree relatives in each family were included in the present study. The genomic DNA of the blood samples was extracted from all participants, and one affected member belonging to each family was subjected to Whole Exome Sequencing (WES). Using bidirectional Sanger sequencing, the identified variants were validated by co-segregation analysis. Two different mutations were detected in the FYCO1 gene encoding FYVE and coiled-coil domain-containing protein. A previously reported missense mutation, c.265C>T (p.Arg89Cys), was found in one Iranian family for the first time, and a combination of two variants in a single codon, c.[265C>T;267C>A] (p.Arg89X), was identified in the three other families. On the other hand, accompanying the c.265C>T mutation, the presence of the c.267C>A polymorphism leads to a premature stop codon. In-Silico Analysis of FYCO1 protein demonstrated that RUN domain will be interrupted so that the large part of functional protein will be eliminated due to this novel variant. FYCO1 has been proved to be involved in human lens development and transparency. Its mutations, therefore, result in CC. Herein, we reported the first autosomal recessive CC patients with c.265C>T (p.Arg89Cys) or c.[265C>T;267C>A] variant in Iranian population for the FYCO1 gene. FYCO1 mutations could be tracked for preventive objectives or even be targeted as therapeutic candidates via treatment approaches in the future

    Unrestricted somatic stem cells, as a novel feeder layer: Ex vivo culture of human limbal stem cells

    No full text
    Ex vivo culture of limbal stem cells (LSCs) is a current promising approach for reconstruction of the ocular surface. In this context, 3T3 feeder layer cells (mouse embryo fibroblast) are generally utilized to maintain and expand LSCs. The aim of this study is to develop a novel culture method (animal-derived products free) to expand LSCs, using umbilical cord derived human unrestricted somatic stem cells (hUSSCs) instead of 3T3 cell with an emphasis on maintaining of the Stemness in LSCs. Using flow-cytometer, isolated hUSSCs were characterized for CD105, CD90, CD166, CD34, CD45, CD31 cell surface markers and their differentiation capability into adipogenic as well as osteogenic lineages were evaluated. In addition to colony-forming efficiency (CFE), epithelial lineage differentiation and karyotyping, LSC properties were evaluated for ABCG2, ΔNP63-α, CK19, CK3, and CK12 mRNA and protein expressions using quantitative RT-PCR (qRT-PCR) and immunocytochemistry, when these cells were co-cultured with hUSSCs (in comparison with 3T3 feeder layer). LSCs, co-cultured with hUSSCs, showed normal karyotype (46, XX), while they could efficiently form colony (86 ± 3) and display up-regulation of the genes associated with stemness and down-regulation of corneal epithelial differentiation genes. Consistent with 3T3 feeder cells, hUSSCs with spindle-shaped morphology and quick splitting up properties had ability to preserve the stem like-cell phenotype of LSCs. These findings were confirmed by qRT-PCR and flow-cytometer. Findings of present study suggest hUSSCs as a promising alternative method for 3T3 feeder layer cells, to preserve growth and stemness of LSCs ex vivo culture
    corecore