26 research outputs found

    Novel inhibitor discovery against aromatase through virtual screening and molecular dynamic simulation

    Get PDF
    Inhibition of aromatase (CYTP450) as a key enzyme in the estrogen biosynthesis could result in regression of estrogen-dependent tumors and even preventing the promotion of breast cancer. Although today potent steroid and non-steroid inhibitors of aromatase are available, isoflavanone derivatives as natural compounds with least side effects have been described as the candidate for a new generation of aromatase inhibitors. 2a as an isoflavanone derivative is the most potent inhibitor of aromatase, synthesized by Bonfield et al. (2012). In our computational study, the mentioned compound was used as the template for virtual screening. Between 286 selected compounds with 70 % of structural similarity to 2a, 150 of them showed lower docking energy in comparison with 2a. Compound 2a_1 with 11.2 kcal/mol had the lowest docking energy. Interaction of 2a_1 with aromatase was further investigated and compared with 2a and androstenedione (ASD) as a natural substrate of aromatase, through 20 ns of molecular dynamic simulation. Analysis of trajectories showed, while ASD interacts with aromatase through hydrogen bonds and 2a just interacts via hydrophobic forces, 2a_1 not only accommodates in the hydrophobic active site of aromatase in a suitable manner but it also makes a stable coordination with iron atom of aromatase heme group via OB

    Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions

    Get PDF
    The advent of porous materials, in particular zeolitic nanoparticles, has opened up unprecedented putative research avenues in nanomedicine. Zeolites with intracrystal mesopores are low framework density aluminosilicates possessing a regular porous structure along with intricate channels. Their unique physiochemical as well as physiological parameters necessitate a comprehensive overview on their classifications, fabrication platforms, cellular/macromolecular interactions, and eventually their prospective biomedical applications through illustrating the challenges and opportunities in different integrative medical and pharmaceutical fields. More particularly, an update on recent advances in zeolite-accommodated drug delivery and the prevalent challenges regarding these molecular sieves is to be presented. In conclusion, strategies to accelerate the translation of these porous materials from bench to bedside along with common overlooked physiological and pharmacological factors of zeolite nanoparticles are discussed and debated. Furthermore, for zeolite nanoparticles, it is a matter of crucial importance, in terms of biosafety and nanotoxicology, to appreciate the zeolite-bio interface once the zeolite nanoparticles are exposed to the bio-macromolecules in biological media. We specifically shed light on interactions of zeolite nanoparticles with fibrinogen and amyloid beta which had been comprehensively investigated in our recent reports. Given the significance of zeolite nanoparticles’ interactions with serum or interstitial proteins conferring them new biological identity, the preliminary approaches for deeper understanding of administration, distribution, metabolism and excretion of zeolite nanoparticles are elucidated

    Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2

    No full text
    Coronavirus disease 2019 (COVID-19) is an acute pneumonic disease, with no prophylactic or specific therapeutical solution. Effective and rapid countermeasure against the spread of the disease’s associated virus, SARS-CoV-2, requires to incorporate the computational approach. In this study, we employed various immunoinformatics tools to design a multi-epitope vaccine polypeptide with the highest potential for activating the human immune system against SARS-CoV-2. The initial epitope set was extracted from the whole set of viral structural proteins. Potential non-toxic and non-allergenic T-cell and B-cell binding and cytokine inducing epitopes were then identified through a priori prediction. Selected epitopes were bound to each other with appropriate linkers, followed by appending a suitable adjuvant to increase the immunogenicity of the vaccine polypeptide. Molecular modelling of the 3D structure of the vaccine construct, docking, molecular dynamics simulations and free energy calculations confirmed that the vaccine peptide had high affinity for Toll-like receptor 3 binding, and that the vaccine-receptor complex was highly stable. As our vaccine polypeptide design captures the advantages of structural epitopes and simultaneously integrates precautions to avoid relevant side effects, it is suggested to be promising for elicitation of an effective and safe immune response against SARS-CoV-2 in vivo

    Insights on the conformation and appropriate drug-target sites on retinal IMPDH1 using the 604-aa isoform lacking the C-terminal extension

    No full text
    Background and purpose: Retinitis pigmentosa (RP) accounts for 2 percent of global cases of blindness. The RP10 form of the disease results from mutations in isoform 1 of inosine 5'-monophosphate dehydrogenase (IMPDH1), the rate-limiting enzyme in the de novo purine nucleotide synthesis pathway. Retinal photoreceptors contain specific isoforms of IMPDH1 characterized by terminal extensions. Considering previously reported significantly varied kinetics among retinal isoforms, the current research aimed to investigate possible structural explanations and suitable functional sites for the pharmaceutical targeting of IMPDH1 in RP. Experimental approach: A recombinant 604-aa IMPDH1 isoform lacking the carboxyl-terminal peptide was produced and underwent proteolytic digestion with α-chymotrypsin. Dimer models of wild type and engineered 604-aa isoform were subjected to molecular dynamics simulation. Findings/Results: The IMPDH1 retinal isoform lacking C-terminal peptide was shown to tend to have more rapid proteolysis (~16% digestion in the first two minutes). Our computational data predicted the potential of the amino-terminal peptide to induce spontaneous inhibition of IMPDH1 by forming a novel helix in a GTP binding site. On the other hand, the C-terminal peptide might block the probable inhibitory role of the N-terminal extension. Conclusion and implications: According to the findings, augmenting IMPDH1 activity by suppressing its filamentation is suggested as a suitable strategy to compensate for its disrupted activity in RP. This needs specific small molecule inhibitors to target the filament assembly interface of the enzyme

    Prediction and assessment of the 3D structure of the multi-epitope vaccines.

    No full text
    (A) Schematic image of the final vaccine. (B) Ramachandran plot analysis of refined construct 1, showing 91.08%, 7.17% and 1.75% residues in favored, allowed and disallowed region, respectively, (C) ProSA validation of 3D construct 1, showing Z-score -3.28, (D) Ramachandran plot analysis of refined construct 2, showing 91.07%, 7.28% and 1.65% residues in favored, allowed and disallowed region, respectively, (E) ProSA validation of 3D construct 2, showing Z-score -3.88, (F and G) 3D structure of vaccines models showing α-helix (red cartoon), β-strand (yellow cartoon) and loop (green cartoon).</p
    corecore