33 research outputs found

    Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris

    Get PDF
    Acknowledgements This project was supported by grants of the BMBF (to P.P.) and MOST (to W.L.). We wish to thank W.E.G. MĂŒller (Johannes-Gutenberg-University, Mainz, Germany) for carrying out the cytotoxicity assay. A scholarship (Grant No. 10/6/117) granted and financed by the Egyptian Government (Ministry of High Education) to W.E. is gratefully acknowledged.Peer reviewedPublisher PD

    Pullularins E and F, Two New Peptides from the Endophytic Fungus Bionectria ochroleuca Isolated from the Mangrove Plant Sonneratia caseolaris

    No full text
    Chemical investigation of the EtOAc extract of the endophytic fungus Bionectria ochroleuca, isolated from the inner leaf tissues of the plant Sonneratia caseolaris (Sonneratiaceae) from Hainan island (China), yielded two new peptides, pullularins E and F (1 and 2) together with three known compounds (3–5). The structures of the new compounds were unambiguously determined on the basis of one- and two-dimensional NMR spectroscopy as well as by high-resolution mass spectrometry. The absolute configurations of amino acids were determined by HPLC analysis of acid hydrolysates using Marfey’s method. The isolated compounds exhibited pronounced to moderate cytotoxic activity against the mouse lymphoma cells (L5178Y) with EC50 values ranging between 0.1 and 6.7 ”g/mL

    Aspergillus Carneus metabolite Averufanin induced cell cycle arrest and apoptotic cell death on cancer cell lines via inducing DNA damage

    No full text
    Abstract Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths in 2020. Current treatment methods include hormone therapy, γ-radiation, immunotherapy, and chemotherapy. Although chemotherapy is the most effective treatment, there are major obstacles posed by resistance mechanisms of cancer cells and side-effects of the drugs, thus the search for novel anti-cancer compounds, especially from natural sources, is crucial for cancer pharmaceutics research. One natural source worthy of investigation is fungal species. In this study, the cytotoxicity of 5 metabolic compounds isolated from filamentous fungus Aspergillus Carneus. Arugosin C, Averufin, Averufanin, Nidurifin and Versicolorin C were analyzed using NCI-SRB assay on 10 different cell lines of breast cancer, ovarian cancer, glioblastoma and non-tumorigenic cell lines. Averufanin showed highest cytotoxicity with lowest IC50 concentrations especially on breast cancer cells. Therefore, Averufanin was further investigated to enlighten cell death and molecular mechanisms of action involved. Cell cycle analysis showed increase in SubG1 phase suggesting apoptosis induction which was further confirmed by Annexin V and Caspase 3/7 Assays. H2A.X staining revealed accumulation of DNA damage in cells treated with Averufanin and finally western blot analysis validated DNA damage response and downstream effects of Averufanin treatment in various signaling pathways. Consequently, this study shows that Averufanin compound induces cell cycle arrest and cell death via apoptosis through causing DNA damage and can be contemplated and further explored as a new therapeutic strategy in breast cancer

    Ircinal E, a New Manzamine Derivative frim the Indonesian Marine Sponge Acanthostrongylophora ingens

    No full text
    Chemical investigation of the MeOH extract of the sponge Acanthostrongylophora ingens afforded the new manzamine derivative ircinal E (1), in addition tosix known metabolites (2–7). The structure of the new compound was unequivocally elucidated using one- and two-dimensional NMR spectroscopy, as wellas high-resolution mass spectrometry. Compounds 1–6 exhibited strong to moderate cytotoxicity against the murine lymphoma L5178Y cell line with IC50values ranging from 2.8 to 21.7 ÎŒM
    corecore