62 research outputs found

    Efficacy of mRNA anti-SARS-CoV-2 vaccination and dynamics of humoral immune response in patients with solid tumors: results from the institutional registry of an italian tertiary cancer center

    Get PDF
    Background: Systemic immunosuppression characterizing cancer patients represents a concern regarding the efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, and real-world evidence is needed to define the efficacy and the dynamics of humoral immune response to mRNA-based anti-SARS-CoV-2 vaccines. Methods: We conducted an observational study that included patients with solid tumors who were candidates for mRNA anti-SARS-CoV-2 vaccination at the Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. The primary objective was to monitor the immunologic response to the mRNA anti-SARS-CoV-2 vaccination in terms of anti-spike antibody levels. All the patients received two doses of the mRNA-1273 vaccine or the BNT162b2 vaccine. Healthcare workers served as a control group of healthy subjects. Results: Among the 243 patients included in the present analysis, 208 (85.60%) and 238 (97.94%) resulted seroconverted after the first and the second dose of vaccine, respectively. Only five patients (2.06%) had a negative titer after the second dose. No significant differences in the rate of seroconversion after two vaccine doses were observed in patients as compared with the control group of healthy subjects. Age and anticancer treatment class had an independent impact on the antibody titer after the second dose of vaccination. In a subgroup of 171 patients with available data about the third timepoint, patients receiving immunotherapy with immune checkpoint inhibitors seem to have a higher peak of antibodies soon after the second dose (3 weeks after), but a more pronounced decrease at a late timepoint (3 months after). Conclusions: The systemic immunosuppression characterizing cancer patients did not seem to dramatically affect the humoral response to anti-SARS-CoV-2 mRNA vaccines in our population of patients with solid tumors. Further investigation is needed to dissect the interplay between immunotherapy and longitudinal dynamics of humoral response to mRNA vaccines, as well as to analyze the cellular response to mRNA vaccines in cancer patients

    A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice

    Get PDF
    The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the surface of vascular endothelial cells stimulates many steps in the angiogenic pathway. Inhibition of this interaction is proving of value in moderating the neovascularization accompanying age-related macular degeneration and in the treatment of cancer. Tissue inhibitor of metalloproteinases-3 (TIMP-3) has been shown to be a natural VEGFR-2 specific antagonist—an activity that is independent of its ability to inhibit metalloproteinases. In this investigation we localize this activity to the C-terminal domain of the TIMP-3 molecule and characterize a short peptide, corresponding to part of this domain, that not only inhibits all three VEGF-family receptors, but also fibroblast growth factor and platelet-derived growth factor receptors. This multiple-receptor inhibition may explain why the peptide was also seen to be a powerful inhibitor of tumour growth and also a partial inhibitor of arthritic joint inflammation in vivo

    Phytoremediation Potential of Sorghum as a Bioenergy Crop in Pb-Amendment Soil

    No full text
    Lead contamination is among the most significant threats to the environment. The phytoextraction approach uses plants that can tolerate and accumulate metals in their tissues. Lately, biofuel plants have been recommended to be suitable for remediation and implementation of potentially toxic elements (PTEs)-polluted soil. This research assessed the Pb phytoremediation potential of three Sorghum bicolor [red cultivar (S1), white cultivar (S2) and shahla cultivar (S3)]. A pot experiment with five treatments (0, 100, 200, 400 and 800 mg Pb/kg soil) was carried out to assess the potential possibility of using these cultivars to remediate the soil of Pb. The potential possibility of using these plants to phytoremediate the soil of Pb was also assessed. The results emphasized that all the examined cultivars could attain growth to maturity in high Pb spiked soil. However, Pb influenced morphological and chlorophyll contents, especially in plants grown in soil amended with 800 mg/kg. The S1 cultivar had the most significant reduction in total chlorophyll with an average of 72%, followed by the S2 and S3 cultivars (65% and 58% reduction, respectively). The highest Pb content in root (110.0, 177.6 and 198.9 mg/kg, respectively) and in-plant shoot (83.9, 103.6 and 99.0 mg/kg, respectively) were detected by sorghum (S1, S2 and S3, respectively) grown in soil enriched by 800 mg/kg of Pb. From the calculated results of the contamination indices, contamination factor (CF), translocation factor (TF), plant uptake (UT) and tolerance index (TI), none of the investigated cultivars were considered Pb hyperaccumulators, but all were identified as particularly ideal for phytostabilization

    Variation in Plant Community Composition and Biomass to Macro and Micronutrients and Salinity across Egypt’s Five Major Coastal Lakes

    No full text
    To better assess the relationship between excess nutrient runoff and plant species diversity in the Egyptian northern coastal lakes, the relationships between aboveground biomass, species diversity, and both micro and macronutrient concentrations in sediment, water, and plant materials were investigated. A total of 38 sampling sites were established for the five Egyptian northern lakes (8 for Bardawil, 10 for Manzala, 8 for Burullus, and 6 for each of Edku and Mariut). Sediment, water, and plant materials were collected and analyzed for both micro and macronutrients including nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), calcium (Ca), potassium (K), iron (Fe), boron (B), sodium (Na), and aluminum (Al). Based on the Sørensen similarity index, Burullus and Mariut lakes were very similar (0.70) in their vegetation composition, while Bardawil Lake had no similarity with the rest of the lakes. In sediment, Mariut Lake had the highest total P concentrations (1.3 g kg−1), while Bardawil Lake had the lowest (0.3 g kg−1). Bardawil, a hypersaline lake, had the highest concentrations for both Na and B (9.6 and 0.1 g kg−1, respectively). Among the deltaic lakes, Mariut Lake water bodies had the lowest plant species richness. The current study indicated that the excessive agricultural and industrial nutrient runoff had a greater impact on the nutrient distribution pattern and negatively impacted plant species diversity at the Egyptian coastal lakes. An integrated management plan, including establishing more pretreatment facilities for runoff and wastewater, should be implemented to reduce the nutrient loads from the main industrial and agricultural runoff sources. Moreover, periodic monitoring and assessment for nutrient runoff reaching the lakes are necessary to help reduce eutrophication levels

    Variation in Plant Community Composition and Biomass to Macro and Micronutrients and Salinity across Egypt’s Five Major Coastal Lakes

    No full text
    To better assess the relationship between excess nutrient runoff and plant species diversity in the Egyptian northern coastal lakes, the relationships between aboveground biomass, species diversity, and both micro and macronutrient concentrations in sediment, water, and plant materials were investigated. A total of 38 sampling sites were established for the five Egyptian northern lakes (8 for Bardawil, 10 for Manzala, 8 for Burullus, and 6 for each of Edku and Mariut). Sediment, water, and plant materials were collected and analyzed for both micro and macronutrients including nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), calcium (Ca), potassium (K), iron (Fe), boron (B), sodium (Na), and aluminum (Al). Based on the Sørensen similarity index, Burullus and Mariut lakes were very similar (0.70) in their vegetation composition, while Bardawil Lake had no similarity with the rest of the lakes. In sediment, Mariut Lake had the highest total P concentrations (1.3 g kg−1), while Bardawil Lake had the lowest (0.3 g kg−1). Bardawil, a hypersaline lake, had the highest concentrations for both Na and B (9.6 and 0.1 g kg−1, respectively). Among the deltaic lakes, Mariut Lake water bodies had the lowest plant species richness. The current study indicated that the excessive agricultural and industrial nutrient runoff had a greater impact on the nutrient distribution pattern and negatively impacted plant species diversity at the Egyptian coastal lakes. An integrated management plan, including establishing more pretreatment facilities for runoff and wastewater, should be implemented to reduce the nutrient loads from the main industrial and agricultural runoff sources. Moreover, periodic monitoring and assessment for nutrient runoff reaching the lakes are necessary to help reduce eutrophication levels.https://doi.org/10.3390/su1410618

    12-HETrE inhibits platelet reactivity and thrombosis in part through the prostacyclin receptor

    Get PDF
    The dihomo-γ-linolenic acid (DGLA)-derived metabolite of 12-lipoxygenase, 12-hydroxy-eicosatrienoic acid (12-HETrE), was recently shown to potently inhibit thrombus formation without prolonging bleeding in murine models. Although 12-HETrE was found to inhibit platelet activation via the Gαs signaling pathway, the Gαs-coupled receptor by which 12-HETrE mediates its antiplatelet effects has yet to be identified. Defining the receptor by which 12-HETrE exerts its effects is key to determining its therapeutic potential as an antiplatelet drug. Therefore, the goal of this study was to determine the Gαs-coupled platelet receptor through which 12-HETrE exerts its antiplatelet effects. In this study, we showed that pharmacological inhibition of the prostacyclin (IP) receptor in human platelets or genetic ablation of IP in murine platelets prevented 12-HETrE from blocking aggregation in vitro. Furthermore, the antithrombotic effects of 12-HETrE were significantly diminished in IP knockout mice in vivo. Together these data demonstrate that the antiplatelet effects of 12-HETrE are at least partially dependent on IP signaling. Importantly, this work identified 12-HETrE as a novel regulator of IP signaling that may aid in the rationale for design of novel therapeutics to inhibit platelet function. Additionally, this study provides further insight into the mechanism by which DGLA supplementation inhibits platelets function

    Evaluation of Soil Organic Carbon Stock in Coastal Sabkhas under Different Vegetation Covers

    No full text
    There has been increasing focus on conserving coastal ecosystems as they have been recognized as high ecosystem carbon stocks and are in the process of land conversion. The present study aims to examine how different vegetation covers impact the soil organic carbon (SOC) stock in coastal sabkhas. To this end, the study was carried out at ten sampling sites represent ten sabkhas in Saudi Arabia’s southern Red Sea coast for two main goals: (1) to examine the vertical distribution of SOC content, SOC density, and the soil bulk density (SBD) based on different vegetation covers, and (2) to assess these locations’ SOC stocks. This study posits that sabkhas with different vegetation covers had distinct parameters specified above. Significant SBD differences were observed in sabkhas with different vegetation covers, with the lowest mean values of sabkhas having >75–100% vegetation cover and the highest mean values of sabkhas having 0–25% vegetation cover. The studied sabkhas also showed significant difference in the total means of SOC density, SOC content, and SOC stock in terms of different vegetation covers, with the highest mean values of sabkhas having >75–100% vegetation cover and the lowest mean of sabkhas having 0–25% vegetation cover. The present study is the first to focus on Saudi Arabia’s sabkha blue carbon stocks and its results can help add to the literature on sabkhas carbon stock, thus aiding relevant government agencies working towards sabkhas management, encouraging public awareness regarding sabkhas conservation stocks, and their part in climate change mitigation

    Evaluation of Soil Organic Carbon Stock in Coastal Sabkhas under Different Vegetation Covers

    No full text
    There has been increasing focus on conserving coastal ecosystems as they have been recognized as high ecosystem carbon stocks and are in the process of land conversion. The present study aims to examine how different vegetation covers impact the soil organic carbon (SOC) stock in coastal sabkhas. To this end, the study was carried out at ten sampling sites represent ten sabkhas in Saudi Arabia’s southern Red Sea coast for two main goals: (1) to examine the vertical distribution of SOC content, SOC density, and the soil bulk density (SBD) based on different vegetation covers, and (2) to assess these locations’ SOC stocks. This study posits that sabkhas with different vegetation covers had distinct parameters specified above. Significant SBD differences were observed in sabkhas with different vegetation covers, with the lowest mean values of sabkhas having >75–100% vegetation cover and the highest mean values of sabkhas having 0–25% vegetation cover. The studied sabkhas also showed significant difference in the total means of SOC density, SOC content, and SOC stock in terms of different vegetation covers, with the highest mean values of sabkhas having >75–100% vegetation cover and the lowest mean of sabkhas having 0–25% vegetation cover. The present study is the first to focus on Saudi Arabia’s sabkha blue carbon stocks and its results can help add to the literature on sabkhas carbon stock, thus aiding relevant government agencies working towards sabkhas management, encouraging public awareness regarding sabkhas conservation stocks, and their part in climate change mitigation

    Prediction Models for Evaluating the Uptake of Heavy Metals by the Invasive Grass Vossia cuspidata (Roxb.) Griff. in the River Nile, Egypt: A Biomonitoring Approach

    No full text
    This study aimed to develop new prediction models that include sediment properties (pH, organic matter, and silt and clay concentrations) for estimating the potential uptake of heavy metals (HMs) by the invasive grass Vossia cuspidata. Plant and sediment samples were collected from the microsites that represent the natural distribution of the species in two Nile islands in Cairo, Egypt. The results show that the root was the main accumulating organ for the analyzed HMs (Fe, Mn, Zn, Cu, Ni, and Pb). The mean concentrations of Fe and Mn and the maximum concentrations of Cu, Ni, and Pb were phytotoxic. The values of the bioconcentration factor were >1, while the translocation factor was >1 for Zn and Cu in rhizome and stem, Mn in leaf, and Ni and Pb in stem and leaf. There were no significant differences between the measured and the predicted HM concentrations in all organs of the species. This indicates the excellent robustness of the developed regression models. Sixteen equations (out of 24) had high R2 values. Thus, V. cuspidata could be considered a biomonitor for HM pollution, and the developed equations will benefit the prediction of HM uptake by the species in the River Nile ecosystem
    • …
    corecore