77 research outputs found

    Inclusive Audience Analysis and Creating Manageable Content

    Get PDF
    Over the last 15 years, content management systems have dramatically changed the ways we think about our pedagogical approaches to teaching audience analysis. This is especially true when content may need to be reused in a set of discrete contexts for various audiences. This chapter introduces a heuristic that helps students think about, write, and deliver reusable content. Modeled after Ridolfo and DeVoss’s (2009) concept rhetorical velocity, this heuristic introduces students to both how they must consider primary audiences for the content they develop as well as various stakeholders, possible audiences, and potential contexts where their content needs to be reused. The chapter concludes with two scenarios/cases instructors can have students use in order to practice audience analysis and rhetorical reuse. Because many potential audiences and contexts can be ignored and/or excluded in the name of content management, this approach to content reuse allows for more inclusive conceptualizations of audiences and helps account for their needs

    Collaborative Course Design in Scientific Writing: Experimentation and Productive Failure

    Get PDF
    English 3820: Scientific Writing, a writing-intensive (WI) course offered by the Department of English at East Carolina University (ECU), serves primarily science majors. According to the course catalog, it provides students with “practice in assimilation and written presentation of scientific information.� The course asks students to consider the situated nature of scientific writing and also to produce scientific writing for various audiences. Throughout the course, students examine theories, methodologies, and ideologies that undergird scientific writing with an eye to perfecting both critique and imitation of scientific styles

    The Molecular Biogeography of the Indo-Pacific: Testing Hypotheses With Multispecies Genetic Patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo-Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. \u3eLocation: The Indo-Pacific Ocean. Time Period: Pliocene through the Holocene. Major Taxa Studied: Fifty-six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo-Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance-based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main Conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo-Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo-Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5

    The molecular biogeography of the Indo‐Pacific: Testing hypotheses with multispecies genetic patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo‐Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. Location: The Indo‐Pacific Ocean. Time period: Pliocene through the Holocene. Major taxa studied: Fifty‐six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo‐ Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance‐based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo‐Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo‐Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5

    High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago

    Get PDF
    In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite FST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (FST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south

    Collaborative Course Design in Scientific Writing: Experimentation and Productive Failure

    No full text
    "English 3820: Scientific Writing , a writing-intensive (WI) course offered by the Department of English at East Carolina University (ECU) , serves primarily science majors. According to the course catalog , it provides students with ""practice in assimilation and written presentation of scientific information."" The course asks students to consider the situated nature of scientific writing and also to produce scientific writing for various audiences. Throughout the course , students examine theories , methodologies , and ideologies that undergird scientific writing with an eye to perfecting both critique and imitation of scientific styles.
    corecore