6,432 research outputs found

    Masses of light tetraquarks and scalar mesons in the relativistic quark model

    Full text link
    Masses of the ground state light tetraquarks are dynamically calculated in the framework of the relativistic diquark-antidiquark picture. The internal structure of the diquark is taken into account by calculating the form factor of the diquark-gluon interaction in terms of the overlap integral of the diquark wave functions. It is found that scalar mesons with masses below 1 GeV: f_0(600) (\sigma), K^*_0(800) (\kappa), f_0(980) and a_0(980) agree well with the light tetraquark interpretation.Comment: 9 pages, Report-no adde

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles

    Interpretation of x-ray-absorption dichroism experiments

    Get PDF
    A rule is derived to use x-ray magnetic circular dichroism spectra to extract the magnetic moment of the conduction-band states with j= l -1/2 separately from those with j= l + 1/2 as a function of energy. This quantity is straightforward to determine from the electronic band structure. The rule is illustrated with an application to pure iron and to the random substitutional alloy Fe_{80}CO_{20}

    Effect of chemical disorder on NiMnSb investigated by Appearance Potential Spectroscopy: a theoretical study

    Full text link
    The half-Heusler alloy NiMnSb is one of the local-moment ferromagnets with unique properties for future applications. Band structure calculations predict exclusively majority bands at the Fermi level, thus indicating {100%} spin polarization there. As one thinks about applications and the design of functional materials, the influence of chemical disorder in these materials must be considered. The magnetization, spin polarization, and electronic structure are expected to be sensitive to structural and stoichiometric changes. In this contribution, we report on an investigation of the spin-dependent electronic structure of NiMnSb. We studied the influence of chemical disorder on the unoccupied electronic density of states by use of the ab-initio Coherent Potential Approximation method. The theoretical analysis is discussed along with corresponding spin-resolved Appearance Potential Spectroscopy measurements. Our theoretical approach describes the spectra as the fully-relativistic self-convolution of the matrix-element weighted, orbitally resolved density of states.Comment: JPD submitte

    Rare radiative B decays to orbitally excited K mesons

    Get PDF
    The exclusive rare radiative B meson decays to orbitally excited axial-vector mesons K_1^*(1270), K_1(1400) and to the tensor meson K_2^*(1430) are investigated in the framework of the relativistic quark model based on the quasipotential approach in quantum field theory. These decays are considered without employing the heavy quark expansion for the s quark. Instead the s quark is treated to be light and the expansion in inverse powers of the large recoil momentum of the final K^{**} meson is used to simplify calculations. It is found that the ratio of the branching fractions of rare radiative B decays to axial vector K^*_1(1270) and K_1(1400) mesons is significantly influenced by relativistic effects. The obtained results for B decays to the tensor meson K_2^*(1430) agree with recent experimental data from CLEO.Comment: 17 pages, revte
    • …
    corecore