1,679 research outputs found

    Failure detection and isolation investigation for strapdown skew redundant tetrad laser gyro inertial sensor arrays

    Get PDF
    The degree to which flight-critical failures in a strapdown laser gyro tetrad sensor assembly can be isolated in short-haul aircraft after a failure occurrence has been detected by the skewed sensor failure-detection voting logic is investigated along with the degree to which a failure in the tetrad computer can be detected and isolated at the computer level, assuming a dual-redundant computer configuration. The tetrad system was mechanized with two two-axis inertial navigation channels (INCs), each containing two gyro/accelerometer axes, computer, control circuitry, and input/output circuitry. Gyro/accelerometer data is crossfed between the two INCs to enable each computer to independently perform the navigation task. Computer calculations are synchronized between the computers so that calculated quantities are identical and may be compared. Fail-safe performance (identification of the first failure) is accomplished with a probability approaching 100 percent of the time, while fail-operational performance (identification and isolation of the first failure) is achieved 93 to 96 percent of the time

    Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate

    Get PDF
    We derive the exact density profile of a harmonically trapped Bose-Einstein condensate (BEC) which has dipole-dipole interactions as well as the usual s-wave contact interaction, in the Thomas-Fermi limit. Remarkably, despite the non-local anisotropic nature of the dipolar interaction, the density turns out to be an inverted parabola, just as in the pure s-wave case, but with a modified aspect ratio. The ``scaling'' solution approach of Kagan, Surkov, and Shlyapnikov [Phys. Rev. A 54, 1753 (1996)] and Castin and Dum [Phys. Rev. Lett. 77}, 5315 (1996)] for a BEC in a time-dependent trap can therefore be applied to a dipolar BEC, and we use it to obtain the exact monopole and quadrupole shape oscillation frequencies.Comment: 5 pages, 3 figure

    Exact Casimir-Polder potentials: interaction of an atom with a conductor-patched dielectric surface

    Get PDF
    We study the interaction between a neutral atom or molecule and a conductor-patched dielectric surface. We model this system by a perfectly reflecting disc lying atop of a non-dispersive dielectric half-space, both interacting with the neutral atom or molecule. We assume the interaction to be non-retarded and at zero temperature. We find an exact solution to this problem. In addition we generate a number of other useful results. For the case of no substrate we obtain the exact formula for the van der Waals interaction energy of an atom near a perfectly conducting disc. We show that the Casimir-Polder force acting on an atom that is polarized in the direction normal to the surface of the disc displays intricate behaviour. This part of our results is directly relevant to recent matter-wave experiments in which cold molecules are scattered by a radially symmetric object in order to study diffraction patterns and the so-called Poisson spot. Furthermore, we give an exact expression for the non-retarded limit of the Casimir-Polder interaction between an atom and a perfectly-conducting bowl.Comment: 9 pages, 9 figure

    Analysis of Fourier transform valuation formulas and applications

    Full text link
    The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the multi-dimensional case, and discuss the calculation of Greeks by Fourier transform methods. As an application, we price options on the minimum of two assets in L\'evy and stochastic volatility models.Comment: 26 pages, 3 figures, to appear in Appl. Math. Financ

    Sonoluminescence as a QED vacuum effect. II: Finite Volume Effects

    Get PDF
    In a companion paper [quant-ph/9904013] we have investigated several variations of Schwinger's proposed mechanism for sonoluminescence. We demonstrated that any realistic version of Schwinger's mechanism must depend on extremely rapid (femtosecond) changes in refractive index, and discussed ways in which this might be physically plausible. To keep that discussion tractable, the technical computations in that paper were limited to the case of a homogeneous dielectric medium. In this paper we investigate the additional complications introduced by finite-volume effects. The basic physical scenario remains the same, but we now deal with finite spherical bubbles, and so must decompose the electromagnetic field into Spherical Harmonics and Bessel functions. We demonstrate how to set up the formalism for calculating Bogolubov coefficients in the sudden approximation, and show that we qualitatively retain the results previously obtained using the homogeneous-dielectric (infinite volume) approximation.Comment: 23 pages, LaTeX 209, ReV-TeX 3.2, five figure

    Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal

    Full text link
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of photon production due to changes in the properties of the quantum-electrodynamic (QED) vacuum arising from a collapsing dielectric bubble. This mechanism can be re-phrased in terms of the Casimir effect and has recently been the subject of considerable controversy. The present paper probes Schwinger's suggestion in detail: Using the sudden approximation we calculate Bogolubov coefficients relating the QED vacuum in the presence of the expanded bubble to that in the presence of the collapsed bubble. In this way we derive an estimate for the spectrum and total energy emitted. We verify that in the sudden approximation there is an efficient production of photons, and further that the main contribution to this dynamic Casimir effect comes from a volume term, as per Schwinger's original calculation. However, we also demonstrate that the timescales required to implement Schwinger's original suggestion are not physically relevant to sonoluminescence. Although Schwinger was correct in his assertion that changes in the zero-point energy lead to photon production, nevertheless his original model is not appropriate for sonoluminescence. In other works (see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/9905034) we have developed a variant of Schwinger's model that is compatible with the physically required timescales.Comment: 18 pages, ReV_TeX 3.2, 9 figures. Major revisions: This document is now limited to providing a probe of Schwinger's original suggestion for sonoluminescence. For details on our own variant of Schwinger's ideas see quant-ph/9805023, quant-ph/9904013, quant-ph/9904018, quant-ph/990503

    Connecting geodesics and security of configurations in compact locally symmetric spaces

    Full text link
    A pair of points in a riemannian manifold makes a secure configuration if the totality of geodesics connecting them can be blocked by a finite set. The manifold is secure if every configuration is secure. We investigate the security of compact, locally symmetric spaces.Comment: 27 pages, 2 figure

    Quantum Electrodynamics near a Dielectric Half-space

    Get PDF
    We determine the photon propagator in the presence of a non-dispersive dielectric half-space and use it to calculate the self-energy of an electron near a dielectric surface

    Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions

    Get PDF
    We calculate the critical rotation frequency at which a vortex state becomes energetically favorable over the vortex-free ground state in a harmonically trapped Bose-Einstein condensate whose atoms have dipole-dipole interactions as well as the usual s-wave contact interactions. In the Thomas-Fermi (hydrodynamic) regime, dipolar condensates in oblate cylindrical traps (with the dipoles aligned along the axis of symmetry of the trap) tend to have lower critical rotation frequencies than their purely s-wave contact interaction counterparts. The converse is true for dipolar condensates in prolate traps. Quadrupole excitations and centre of mass motion are also briefly discussed as possible competing mechanisms to a vortex as means by which superfluids with partially attractive interactions might carry angular momentumComment: 12 pages, 12 figure

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure
    • …
    corecore