3,871 research outputs found

    Training Induced Positive Exchange Bias in NiFe/IrMn Bilayers

    Full text link
    Positive exchange bias has been observed in the Ni81_{81}Fe19_{19}/Ir20_{20}Mn80_{80} bilayer system via soft x-ray resonant magnetic scattering. After field cooling of the system through the blocking temperature of the antiferromagnet, an initial conventional negative exchange bias is removed after training i. e. successive magnetization reversals, resulting in a positive exchange bias for a temperature range down to 30 K below the blocking temperature (450 K). This new manifestation of magnetic training is discussed in terms of metastable magnetic disorder at the magnetically frustrated interface during magnetization reversal.Comment: 4 pages, 3 figure

    Cryogenic fluid management experiment

    Get PDF
    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space

    Behavior of fluids in a weightless environment

    Get PDF
    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting

    Candidate locations for SPS rectifying antennas

    Get PDF
    The feasibility of placing 120 Satellite Power System (SPS) rectifying antenna (rectenna) sites across the U.S. was studied. An initial attempt is made to put two land sites in each state using several land site selection criteria. When only 69 land sites are located, it is decided to put the remaining sites in the sea and sea site selection criteria are identified. An estimated projection of electrical demand distribution for the year 2000 is then used to determine the distribution of these sites along the Pacific, Atlantic, and Gulf Coasts. A methodology for distributing rectenna sites across the country and for fine-tuning exact locations is developed, and recommendations on rectenna design and operations are made

    Dual Behavior of Antiferromagnetic Uncompensated Spins in NiFe/IrMn Exchange Biased Bilayers

    Full text link
    We present a comprehensive study of the exchange bias effect in a model system. Through numerical analysis of the exchange bias and coercive fields as a function of the antiferromagnetic layer thickness we deduce the absolute value of the averaged anisotropy constant of the antiferromagnet. We show that the anisotropy of IrMn exhibits a finite size effect as a function of thickness. The interfacial spin disorder involved in the data analysis is further supported by the observation of the dual behavior of the interfacial uncompensated spins. Utilizing soft x-ray resonant magnetic reflectometry we have observed that the antiferromagnetic uncompensated spins are dominantly frozen with nearly no rotating spins due to the chemical intermixing, which correlates to the inferred mechanism for the exchange bias.Comment: 4 pages, 3 figure

    N∗N^{\bf *} decays to NωN\omega from new data on γp→ωp\gamma p\to \omega p

    Get PDF
    Data on the reaction γp→ωp\gamma p\to \omega p with ω→π0γ\omega\to\pi^0\gamma, taken with unpolarized or polarized beams in combination with an unpolarized or polarized proton-target, were analyzed within the Bonn-Gatchina (BnGa) partial wave analysis. Differential cross sections, several spin density matrix elements, the beam asymmetry Σ\Sigma, the normalized helicity difference EE, and the correlation GG between linear photon and longitudinal target polarization were included in a large data base on pion and photo-induced reactions. The data on ω\omega photoproduction are used to determine twelve N∗→NωN^*\to N\omega branching ratios; most of these are determined for the first time.Comment: 6 pages, 4 figures, 2 table

    Rapid Response Plan for Management and Control of the Chinese Mitten Crab, Northeast United States and Atlantic Canada

    Get PDF
    The Rapid Response Plan for Management and Control of the Chinese Mitten Crab is intended to guide efforts to mitigate the further introduction and spread of the Chinese mitten crab in the northeastern United States and Canada. Due to the unique challenges of invasive species introductions to marine and coastal ecosystems, the mitten crab and other existing and potential marine invasive species are more difficult and often more costly to manage or control than freshwater aquatic or terrestrial invasive species. These challenges include ecosystem connectivity across vast geographic areas, ocean currents and tidal influence, and shipping- and ballast-related vectors for larvae. Warming ocean and coastal waters and species range expansions influenced by climate change will further compound these issues. Recent and historical efforts to control or eradicate invasive mitten crab populations in other countries and in other parts of the United States have not been effective. More than a century of efforts to control or eradicate other marine invasive species, such as the European green crab, has also proven unsuccessful. For these reasons, it is prudent to focus available funds and regional capacity for early detection and rapid response planning on prevention, as we must assume that eradication is not likely should Chinese mitten crabs enter Rhode Island, Massachusetts, New Hampshire, Maine or Maritime Canada. The Sea Grant Programs in Massachusetts, New Hampshire and Maine worked with local, state, regional and federal stakeholders to establish a foundation for prevention, early detection and rapid response efforts of the Chinese mitten crab
    • …
    corecore