144 research outputs found
Recommended from our members
Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon
Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession
Distinguishing forest types in restored tropical landscapes with UAV-borne LIDAR
Forest landscape restoration is a global priority to mitigate negative effects of climate change, conserve biodiversity, and ensure future sustainability of forests, with international pledges concentrated in tropical forest regions. To hold restoration efforts accountable and monitor their outcomes, traditional strategies for monitoring tree cover increase by field surveys are falling short, because they are labor-intensive and costly. Meanwhile remote sensing approaches have not been able to distinguish different forest types that result from utilizing different restoration approaches (conservation versus production focus). Unoccupied Aerial Vehicles (UAV) with light detection and ranging (LiDAR) sensors can observe forests` vertical and horizontal structural variation, which has the potential to distinguish forest types. In this study, we explored this potential of UAV-borne LiDAR to distinguish forest types in landscapes under restoration in southeastern Brazil by using a supervised classification method. The study area encompassed 150 forest plots with six forest types divided in two forest groups: conservation (remnant forests, natural regrowth, and active restoration plantings) and production (monoculture, mixed, and abandoned plantations) forests. UAV-borne LiDAR data was used to extract several Canopy Height Model (CHM), voxel, and point cloud statistic based metrics at a high resolution for analysis. Using a random forest classification model we could successfully classify conservation and production forests (90% accuracy). Classification of the entire set of six types was less accurate (62%) and the confusion matrix showed a divide between conservation and production types. Understory Leaf Area Index (LAI) and the variation in vegetation density in the upper half of the canopy were the most important classification metrics. In particular, LAI understory showed the most variation, and may help advance ecological understanding in restoration. The difference in classification success underlines the difficulty of distinguishing individual forest types that are very similar in management, regeneration dynamics, and structure. In a restoration context, we showed the ability of UAV-borne LiDAR to identify complex forest structures at a plot scale and identify groups and types widely distributed across different restored landscapes with medium to high accuracy. Future research may explore a fusion of UAV-borne LiDAR with optical sensors , include successional stages in the analyses to further characterize , distinguish forest types and their contributions to landscape restoration
UAVs as a tool for optimizing boat-supported flood evacuation operations
The frequency and intensity of flood events are increasing year by year as a result of climate change. This poses significant threats to human settlements and adversely affects biodiversity, agriculture, and infrastructure. One of the most prominent and traditional flood evacuation approaches is through the use of boats. Nonetheless, serious challenges exist with respect to determining the optimal deployment locations, routes, and timing. Given research advances in the Unmanned Aerial Vehicles (UAVs) sector—and their ability to offer real-time data and aerial monitoring services—we argue that their applications could help enhance boat-supported flood evacuation operations. In this opinion piece, we explore new opportunities for disaster management and underscore the advantages of integrating UAVs into flood evacuation methodologies, including areas of rapid field assessment, optimal route planning, and improved coordination between rescue boats. Notwithstanding the potential of UAVs, we emphasize several gaps to be explored in terms of large-scale data management/processing, regulatory limitations, and technological know-how. Furthermore, we provide recommendations for bolstering boat deployment protocols, disaster preparedness training programs, policy frameworks, and emergency response systems, which could maximize their efficacy in flood evacuation scenarios.Drone
Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data
Light Detection and Ranging (LiDAR) remote sensing has been established as one of the most promising tools for large-scale forest monitoring and mapping. Continuous advances in computational techniques, such as machine learning algorithms, have been increasingly improving our capability to model forest attributes accurately and at high spatial and temporal resolution. While there have been previous studies exploring the use of LiDAR and machine learning algorithms for forest inventory modeling, as yet, no studies have demonstrated the combined impact of sample size and different modeling techniques for predicting and mapping stem total volume in industrial Eucalyptus spp. tree plantations. This study aimed to compare the combined effects of parametric and nonparametric modeling methods for estimating volume in Eucalyptus spp. tree plantation using airborne LiDAR data while varying the reference data (sample size). The modeling techniques were compared in terms of root mean square error (RMSE), bias, and R2 with 500 simulations. The best performance was verified for the ordinary least-squares (OLS) method, which was able to provide comparable results to the traditional forest inventory approaches using only 40% (n = 63; ~0.04 plots/ha) of the total field plots, followed by the random forest (RF) algorithm with identical sample size values. This study provides solutions for increasing the industry efficiency in monitoring and managing forest plantation stem volume for the paper and pulp supply chain
Assessing innovations for upscaling forest landscape restoration
There is an increasing urgency to implement large-scale ecosystem restoration to mitigate the biodiversity and climate crises. These efforts must be scaled up to counteract the widespread degradation of the world’s forests, although restoration costs can often limit their application. Thus, there is a pressing need to identify cost-effective approaches that catalyze landscape-scale ecological recovery. Here, we highlight seven assisted restoration innovations with demonstrated local-scale results that, once upscaled, hold promise to rapidly regenerate forests. We comprehensively assessed how each approach facilitated forest, woodland, and/or mangrove recovery across 143 studies. Our results reveal techniques with a marked ability to catalyze vegetation recovery compared to “business-as-usual” approaches. However, the context-dependent cost-benefit ratio and feasibility of applying particular approaches requires careful consideration. Our assessment emphasizes that we already have many of the tools necessary to drive the terrestrial restoration movement forward. It is time to implement and assess their efficacy at scale
Treetop: A Shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists
Individual tree detection (ITD) and crown delineation are two of the most relevant methods for extracting detailed and reliable forest information from LiDAR (Light Detection and Ranging) datasets. However, advanced computational skills and specialized knowledge have been normally required to extract forest information from LiDAR.The development of accessible tools for 3D forest characterization can facilitate rapid assessment by stakeholders lacking a remote sensing background, thus fostering the practical use of LiDAR datasets in forest ecology and conservation. This paper introduces the treetop application, an open-source web-based and R package LiDAR analysis tool for extracting forest structural information at the tree level, including cutting-edge analyses of properties related to forest ecology and management.We provide case studies of how treetop can be used for different ecological applications, within various forest ecosystems. Specifically, treetop was employed to assess post-hurricane disturbance in natural temperate forests, forest homogeneity in industrial forest plantations and the spatial distribution of individual trees in a tropical forest.treetop simplifies the extraction of relevant forest information for forest ecologists and conservationists who may use the tool to easily visualize tree positions and sizes, conduct complex analyses and download results including individual tree lists and figures summarizing forest structural properties. Through this open-source approach, treetop can foster the practical use of LiDAR data among forest conservation and management stakeholders and help ecological researchers to further understand the relationships between forest structure and function.The authors thank Nicholas L. Crookston for co‐developing the web‐LiDAR treetop tool, and the two anonymous reviewers for their helpful suggestions on the first version of the manuscript. This study is based on the work supported by the Department of Defence Strategic Environmental Research and Development Program (SERDP) under grants No. RC‐2243, RC19‐1064 and RC20‐1346 and USDA Forest Service (grand No. PRO00031122
- …