249 research outputs found

    Promoting mobility and healthy aging in men: a narrative review

    Get PDF
    Maintaining mobility is an important aspect of health and well-being in older men. This literature review describes several modifiable and nonmodifiable risk factors impacting bone, muscle, and joint health. Exercise and nutritional interventions may help to prevent the progressive deterioration in bones, muscles, and joints impacting mobility in later life. Limitations in mobility are increasingly recognized as a major public health problem due to an aging population and growing number of older individuals affected by disabling comorbidities. Despite increasing numbers and debilitating consequences, there are no guidelines providing recommendations on strategies to maintain mobility for healthy aging among older men. This narrative review aims to fill this literature gap. PubMed, Scopus, and Google Scholar databases were searched using predefined search terms. Primary studies, exploratory analyses, cross-sectional surveys, meta-analyses, evidence-based clinical reviews, and guidelines from nationally recognized societies focusing on mobility in older men and key elements including bone, muscle and joint health, and balance were selected. Several modifiable and nonmodifiable risk factors have been reported in the literature that impact bone, muscle, and joint health and predispose older men to falls and fractures. The most common conditions impacting bones, muscles, and joints are osteoporosis, sarcopenia, and osteoarthritis, respectively. In addition to being key contributors to disability in the elderly, these conditions are all associated with a higher mortality risk. Although more studies are required, current evidence supports the use of various nonpharmacological (mainly exercise and nutrition) and/or pharmacological treatment modalities to help prevent and/or reverse these conditions. Incorporating lifestyle interventions involving exercise and nutrition at a younger age can help prevent the age-related, progressive deterioration in bones, muscles, and joints that can reduce mobility in later life. Established barriers to physical activities (e.g., poor health, social isolation) in men are important to consider for optimizing outcomes

    Circulating 25-hydroxyvitamin D concentration and cause-specific mortality in the Melbourne Collaborative Cohort Study.

    Get PDF
    Vitamin D deficiency is associated with higher all-cause mortality, but associations with specific causes of death are unclear. We investigated the association between circulating 25-hydroxyvitamin D (25(OH)D) concentration and cause-specific mortality using a case-cohort study within the Melbourne Collaborative Cohort Study (MCCS). Eligibility for the case-cohort study was restricted to participants with baseline dried blood spot samples and no pre-baseline diagnosis of cancer. These analyses included participants who died (n = 2307) during a mean follow-up of 14 years and a sex-stratified random sample of eligible cohort participants ('subcohort', n = 2923). Concentration of 25(OH)D was measured using liquid chromatography-tandem mass spectrometry. Cox regression, with Barlow weights and robust standard errors to account for the case-cohort design, was used to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) for cause-specific mortality in relation to 25(OH)D concentration with adjustment for confounders. Circulating 25(OH)D concentration was inversely associated with risk of death due to cancer (HR per 25 nmol/L increment = 0.88, 95 % CI 0.78-0.99), particularly colorectal cancer (HR = 0.75, 95 % CI 0.57-0.99). Higher 25(OH)D concentrations were also associated with a lower risk of death due to diseases of the respiratory system (HR = 0.62, 95 % CI 0.43-0.88), particularly chronic obstructive pulmonary disease (HR = 0.53, 95 % CI 0.30-0.94), and diseases of the digestive system (HR = 0.44, 95 % CI 0.26-0.76). Estimates for diabetes mortality (HR = 0.64, 95 % CI 0.33-1.26) and cardiovascular disease mortality (HR = 0.90, 95 % CI 0.76-1.07) lacked precision. The findings suggest that vitamin D might be important for preventing death due to some cancers, respiratory diseases, and digestive diseases

    Associations of Vitamin D with Inter- and Intra-Muscular Adipose Tissue and Insulin Resistance in Women with and without Polycystic Ovary Syndrome

    Get PDF
    Low vitamin D and insulin resistance are common in polycystic ovary syndrome (PCOS) and associated with higher inter- and intra-muscular adipose tissue (IMAT). We investigated associations between vitamin D, IMAT and insulin resistance in a cross-sectional study of 40 women with PCOS and 30 women without PCOS, and pre- and post-exercise in a 12-week intervention in 16 overweight participants (10 with PCOS and six without PCOS). A non-classical body mass index (BMI) threshold was used to differentiate lean and overweight women (BMI ≥ 27 kg/m²). Measurements included plasma 25-hydroxyvitamin D (25OHD), insulin resistance (glucose infusion rate (GIR; mg/m²/min), fasting glucose and insulin, and glycated haemoglobin), visceral fat, mid-thigh IMAT (computed tomography) and total body fat (dual-energy X-ray absorptiometry). Women with both PCOS and low 25OHD levels had the lowest GIR (all p < 0.05). Higher IMAT was associated with lower 25OHD (B = -3.95; 95% CI -6.86, -1.05) and GIR (B = -21.3; 95% CI -37.16, -5.44) in women with PCOS. Overweight women with pre-exercise 25OHD ≥30 nmol/L had significant increases in GIR, and decreases in total and visceral fat (all p < 0.044), but no associations were observed when stratified by PCOS status. Women with PCOS and low 25OHD levels have increased insulin resistance which may be partly explained by higher IMAT. Higher pre-training 25OHD levels may enhance exercise-induced changes in body composition and insulin resistance in overweight women

    Glucose-loading reduces bone remodeling in women and osteoblast function in vitro

    Get PDF
    Aging is associated with a reduction in osteoblast life span and the volume of bone formed by each basic multicellular unit. Each time bone is resorbed, less is deposited producing microstructural deterioration. Aging is also associated with insulin resistance and hyperglycemia, either of which may cause, or be the result of, a decline in undercarboxylated osteocalcin (ucOC), a protein produced by osteoblasts that increases insulin sensitivity. We examined whether glucose-loading reduces bone remodeling and ucOC in&nbsp;vivo and osteoblast function in&nbsp;vitro, and so compromises bone formation. We administered an oral glucose tolerance test (OGTT) to 18 pre and postmenopausal, nondiabetic women at rest and following exercise and measured serum levels of bone remodeling markers (BRMs) and ucOC. We also assessed whether increasing glucose concentrations with or without insulin reduced survival and activity of cultured human osteoblasts. Glucose-loading at rest and following exercise reduced BRMs in pre and postmenopausal women and reduced ucOC in postmenopausal women. Higher glucose correlated negatively, whereas insulin correlated positively, with baseline BRMs and ucOC. The increase in serum glucose following resting OGTT was associated with the reduction in bone formation markers. D-glucose (&gt;10&nbsp;mmol&nbsp;L-1) increased osteoblast apoptosis, reduced cell activity and osteocalcin expression compared with 5&nbsp;mmol&nbsp;L-1. Insulin had a protective effect on these parameters. Collagen expression in&nbsp;vitro was not affected in this time course. In conclusion, glucose exposure reduces BRMs in women and exercise failed to attenuate this suppression effect. The suppressive effect of glucose on BRMs may be due to impaired osteoblast work and longevity. Whether glucose influences material composition and microstructure remains to be determined

    A Single Dose of Prednisolone as a Modulator of Undercarboxylated Osteocalcin and Insulin Sensitivity Post-Exercise in Healthy Young Men: A Study Protocol

    Get PDF
    Background: Undercarboxylated osteocalcin (ucOC) increases insulin sensitivity in mice. In humans, data are supportive, but the studies are mostly cross-sectional. Exercise increases whole-body insulin sensitivity, in part via ucOC, while acute glucocorticoid treatment suppresses ucOC in humans and mice.Objectives: A single dose of prednisolone reduces the rise in ucOC produced by exercise, which partly accounts for the failed increase in insulin sensitivity following exercise.Methods: Healthy young men (n=12) aged 18 to 40 years will be recruited. Initial assessments will include analysis of fasting blood, body composition, aerobic power (VO2peak), and peak heart rate. Participants will then be randomly allocated, double-blind, to a single dose of 20 mg of prednisolone or placebo. The two experimental trials will involve 30 minutes of interval exercise (90%-95% peak heart rate), followed by 3 hours of recovery and 2 hours of euglycaemic- hyperinsulinaemic clamp (insulin clamp). Seven muscle biopsies and blood samples will be obtained at rest, following exercise and post-insulin clamps.Results: The study is funded by the National Heart Foundation of Australia and Victoria University. Enrollment has already commenced and data collection will be completed in 2016.Conclusion: If the hypothesis is confirmed, the study will provide novel insights into the potential role of ucOC in insulin sensitivity in human subjects and will elucidate pathways involved in exercise-induced insulin sensitivity

    Associations of Serum 25-Hydroxyvitamin D with Physical Performance and Bone Health in Overweight and Obese Older Adults

    Get PDF
    Low vitamin D status commonly accompanies obesity, and both vitamin D deficiency and obesity have been associated with falls and fracture risk in older adults. We aimed to determine the associations of serum 25-hydroxyvitamin D (25(OH)D) concentrations with physical performance and bone health in community-dwelling, overweight and obese older men and women. Serum 25(OH)D concentrations were measured in 84 participants with body mass index ≥25 kg/m² (mean ± SD age 62.4 ± 7.9 years; 55% women). Physical function was determined by short physical performance battery, hand grip and quadriceps strength, and stair climb power tests. Body composition and bone structure were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography, respectively. Mean ± SD 25(OH)D was 49.6 ± 17.7 nmol/L, and 50% of participants had low 25(OH)D ( 0.05). Lower 25(OH)D concentrations are associated with poorer quadricep strength and muscle power in overweight and obese older women but not men

    Calf muscle density is independently associated with physical function in overweight and obese older adults

    Get PDF
    OBJECTIVES: To determine whether associations of calf muscle density with physical function are independent of other determinants of functional decline in overweight and obese older adults. METHODS: This was a secondary analysis of a cross-sectional study of 85 community-dwelling overweight and obese adults (mean±SD age 62.8±7.9 years; BMI 32.3±6.1 kg/m2; 58% women). Peripheral quantitative computed tomography assessed mid-calf muscle density (66% tibial length) and dual-energy X-ray absorptiometry determined visceral fat area. Fasting glucose, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and C-reactive protein (CRP) were analysed. Physical function assessments included hand grip and knee extension strength, balance path length (computerised posturography), stair climb test, Short Physical Performance Battery (SPPB) and self-reported falls efficacy (Modified Falls Efficacy Scale; M-FES). RESULTS: Visceral fat area, not muscle density, was independently associated with CRP and fasting glucose (B=0.025; 95% CI 0.009-0.042 and B=0.009; 0.001-0.017, respectively). Nevertheless, higher muscle density was independently associated with lower path length and stair climb time, and higher SPPB and M-FES scores (all P⟨0.05). Visceral fat area, fasting glucose and CRP did not mediate these associations. CONCLUSIONS: Higher calf muscle density predicts better physical function in overweight and obese older adults independent of insulin resistance, visceral adiposity or inflammation

    Osteo-cise: Strong Bones for Life: protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Get PDF
    Background : Osteoporosis affects over 220 million people worldwide, and currently there is no \u27cure\u27 for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods : The \u27Osteo-cise: Strong Bones for Life\u27 study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function, and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged 60 years or above will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month \u27research to practise\u27 translational phase. Participants will be randomly assigned to either the \u27Osteo-cise\u27 intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test). Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand), falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion : The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture.<br /
    • …
    corecore