14 research outputs found

    Expression quantitative trait loci of genes predicting outcome are associated with survival of multiple myeloma patients

    Get PDF
    Canadian Institutes of Health Research, Grant/ Award Number: 81274; Huntsman Cancer Institute Pilot Funds; Leukemia Lymphoma Society, Grant/Award Number: 6067-09; the National Institute of Health/National Cancer Institute, Grant/Award Numbers: P30 CA016672, P30 CA042014, P30 CA13148, P50 CA186781, R01 CA107476, R01 CA134674, R01 CA168762, R01 CA186646, R01 CA235026, R21 CA155951, R25 CA092049, R25 CA47888, U54 CA118948; Utah Population Database, Utah Cancer Registry, Huntsman Cancer Center Support Grant, Utah State Department of Health, University of Utah; VicHealth, Cancer Council Victoria, Australian National Health and Medical Research Council, Grant/Award Numbers: 1074383, 209057, 396414; Victorian Cancer Registry, Australian Institute of Health and Welfare, Australian National Death Index, Australian Cancer Database; Mayo Clinic Cancer Center; University of Pisa and DKFZThe authors thank all site investigators that contributed to the studies within the Multiple Myeloma Working Group (Interlymph Consortium), staff involved at each site and, most importantly, the study participants for their contributions that made our study possible. This work was partially supported by intramural funds of University of Pisa and DKFZ. This work was supported in part by the National Institute of Health/National Cancer Institute (R25 CA092049, P30 CA016672, R01 CA134674, P30 CA042014, R01 CA186646, R21 CA155951, U54 CA118948, P30 CA13148, R25 CA47888, R01 CA235026, R01 CA107476, R01 CA168762, P50 CA186781 and the NCI Intramural Research Program), Leukemia Lymphoma Society (6067-09), Huntsman Cancer Institute Pilot Funds, Utah PopulationDatabase, Utah Cancer Registry, Huntsman Cancer Center Support Grant, Utah StateDepartment of Health, University of Utah, Canadian Institutes of Health Research (Grant number 81274), VicHealth, Cancer Council Victoria, Australian National Health and Medical Research Council (Grants 209057, 396414, 1074383), Victorian Cancer Registry, Australian Institute of Health and Welfare, Australian National Death Index, Australian Cancer Database and the Mayo Clinic Cancer Center.Open Access funding enabled and organized by ProjektDEAL.The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.Gene expression profiling can be used for predicting survival in multiple myeloma (MM) and identifying patients who will benefit from particular types of therapy. Some germline single nucleotide polymorphisms (SNPs) act as expression quantitative trait loci (eQTLs) showing strong associations with gene expression levels. We performed an association study to test whether eQTLs of genes reported to be associated with prognosis of MM patients are directly associated with measures of adverse outcome. Using the genotype-tissue expression portal, we identified a total of 16 candidate genes with at least one eQTL SNP associated with their expression with P < 10(-7) either in EBV-transformed B-lymphocytes or whole blood. We genotyped the resulting 22 SNPs in 1327 MM cases from the International Multiple Myeloma rESEarch (IMMEnSE) consortium and examined their association with overall survival (OS) and progression-free survival (PFS), adjusting for age, sex, country of origin and disease stage. Three polymorphisms in two genes (TBRG4-rs1992292, TBRG4-rs2287535 and ENTPD1-rs2153913) showed associations with OS at P < .05, with the former two also associated with PFS. The associations of two polymorphisms in TBRG4 with OS were replicated in 1277 MM cases from the International Lymphoma Epidemiology (InterLymph) Consortium. A meta-analysis of the data from IMMEnSE and InterLymph (2579 cases) showed that TBRG4-rs1992292 is associated with OS (hazard ratio = 1.14, 95% confidence interval 1.04-1.26, P = .007). In conclusion, we found biologically a plausible association between a SNP in TBRG4 and OS of MM patients.Canadian Institutes of Health Research (CIHR) 81274Huntsman Cancer Institute Pilot FundsLeukemia and Lymphoma Society 6067-09United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Cancer Institute (NCI) P30 CA016672 P30 CA042014 P30 CA13148 P50 CA186781 R01 CA107476 R01 CA134674 R01 CA168762 R01 CA186646 R01 CA235026 R21 CA155951 R25 CA092049 R25 CA47888 U54 CA118948Utah Population Database, Utah Cancer Registry, Huntsman Cancer Center Support Grant, Utah State Department of Health, University of UtahVicHealth, Cancer Council Victoria, Australian National Health and Medical Research Council 1074383 209057 396414Victorian Cancer Registry, Australian Institute of Health and Welfare, Australian National Death Index, Australian Cancer DatabaseMayo Clinic Cancer CenterUniversity of PisaHelmholtz Associatio

    Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies

    Full text link
    Cancer cells in hypoxic areas of solid tumors are to a large extent protected against the action of radiation as well as many chemotherapeutic drugs. There are, however, two different aspects of the problem caused by tumor hypoxia when cancer therapy is concerned: One is due to the chemical reactions that molecular oxygen enters intoin therapeutically targeted cells. This results in a direct chemical protection against therapy by the hypoxic microenvironment which has little to do with cellular biological regulatory processes. This part of the protective effect of hypoxia has been known for more than half a century and has been studied extensively. However, in recent years more focus has been put into the other aspect of hypoxia, namely the effect of this microenvironmental condition on selecting cells with certain genetical pre-requisites that are negative with respect to patient prognosis. There are adaptive mechanisms, where hypoxia induces regulatory cascades in cells resulting in a changed metabolism or changes in extra cellular signalling. These processes may lead to changes in cellular intrinsic sensitivity to treatment irrespective of oxygenation and furthermore, may also have consequences for tissue organization. Thus, the adaptive mechanisms induced by hypoxia itself may have a selective effect on cells with a fine-tuned protection against damage and stress of many kinds. It therefore could be that the adaptive mechanisms may be taken advantage of for new tumor labelling/imaging and treatment strategies. One of the Achilles’ heels of hypoxia research has always been exact measurements of tissue oxygenation as well as control of oxygenation in biological tumor models. Thus, development of technology that can ease this control is vital in order to study mechanisms and perform drug development under relevant conditions. An integrated EU Framework project 2004-2009, termed Euroxy, demonstrates several pathways involved in transcription and translation control of the hypoxic cell phenotype and evidence of cross talk with responses to pH and redox changes. The carbon anhydrase isoenzyme CA IX was selected for further studies due to its expression on the surface of many types of hypoxic tumors. The effort has lead to marketable culture flaks with sensors and incubation equipment and the synthesis of new drug candidates against new molecular targets. New labelling/imaging methods for cancer diagnosing and imaging of hypoxic cancer tissue now are being tested in xeno-graft models and also are in early clinical testing while new potential anticancer drugs are undergoing tests using xenografted tumor cancers. The present paper describes the above results in individual consortium partner presentations
    corecore