25 research outputs found

    Genetics and molecular basis of human peroxisome biogenesis disorders

    Get PDF
    AbstractHuman peroxisome biogenesis disorders (PBDs) are a heterogeneous group of autosomal recessive disorders comprised of two clinically distinct subtypes: the Zellweger syndrome spectrum (ZSS) disorders and rhizomelic chondrodysplasia punctata (RCDP) type 1. PBDs are caused by defects in any of at least 14 different PEX genes, which encode proteins involved in peroxisome assembly and proliferation. Thirteen of these genes are associated with ZSS disorders. The genetic heterogeneity among PBDs and the inability to predict from the biochemical and clinical phenotype of a patient with ZSS which of the currently known 13 PEX genes is defective, has fostered the development of different strategies to identify the causative gene defects. These include PEX cDNA transfection complementation assays followed by sequencing of the thus identified PEX genes, and a PEX gene screen in which the most frequently mutated exons of the different PEX genes are analyzed. The benefits of DNA testing for PBDs include carrier testing of relatives, early prenatal testing or preimplantation genetic diagnosis in families with a recurrence risk for ZSS disorders, and insight in genotype–phenotype correlations, which may eventually assist to improve patient management. In this review we describe the current status of genetic analysis and the molecular basis of PBDs. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease

    The important role of biochemical and functional studies in the diagnostics of peroxisomal disorders

    Get PDF
    Peroxisomes are dynamic organelles that play an essential role in a variety of metabolic pathways. Peroxisomal dysfunction can lead to various biochemical abnormalities and result in abnormal metabolite levels, such as increased very long-chain fatty acid or reduced plasmalogen levels. The metabolite abnormalities in peroxisomal disorders are used in the diagnostics of these disorders. In this paper we discuss in detail the different diagnostic tests available for peroxisomal disorders and focus specifically on the important role of biochemical and functional studies in cultured skin fibroblasts in reaching the right diagnosis. Several examples are shown to underline the power of such studie

    Laboratory Diagnosis of Peroxisomal Disorders in the -Omics Era and the Continued Importance of Biomarkers and Biochemical Studies

    No full text
    The clinical as well as biochemical and genetic spectrum of peroxisomal diseases has markedly increased over the last few years, thanks to the revolutionary advances in the field of genome analysis and several -omics technologies. This has led to the recognition of novel disease phenotypes linked to mutations in previously identified peroxisomal genes as well as several hitherto unidentified peroxisomal disorders. Correct interpretation of the wealth of data especially coming from genome analysis requires functional studies at the level of metabolites (peroxisomal metabolite biomarkers), enzymes, and the metabolic pathway(s) involved. This strategy is not only required to identify the true defect in each individual patient but also to determine the extent of the deficiency as described in detail in this article

    Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder

    No full text
    The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders and can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe multisystemic disorders. To get insight into the spectrum of PEX gene defects among ZSS disorders and to investigate if additional human PEX genes are required for functional peroxisome biogenesis, we assigned over 600 ZSS fibroblast cell lines to different genetic complementation groups. These fibroblast cell lines were subjected to a complementation assay involving fusion by means of polyethylene glycol or a PEX cDNA transfection assay specifically developed for this purpose. In a majority of the cell lines we subsequently determined the underlying mutations by sequence analysis of the implicated PEX genes. The PEX cDNA transfection assay allows for the rapid identification of PEX genes defective in ZSS patients. The assignment of over 600 fibroblast cell lines to different genetic complementation groups provides the most comprehensive and representative overview of the frequency distribution of the different PEX gene defects. We did not identify any novel genetic complementation group, suggesting that all PEX gene defects resulting in peroxisome deficiency are currently know

    A Mutation in PEX19 Causes a Severe Clinical Phenotype in a Patient With Peroxisomal Biogenesis Disorder

    No full text
    Peroxisomal biogenesis disorders (PBD) are groups of inherited neurometabolic disorders caused by defects in PEX genes. We report on a female infant, born to a consanguineous parents (first degree cousins), who presented with inactivity, poor sucking, and hypotonia early in the neonatal period. She had subtle dysmorphic features. Liver function tests were impaired with raised liver enzymes, conjugated and unconjugated hyperbilirubinemia. CT of the brain showed diffuse bilateral changes. She developed seizures with an abnormal EEG. Plasma very long chain fatty acid analysis showed high C26:0 levels and increasedC26:0/C22:0 and C24:0/C22:0 ratios, which is consistent with a PBD. Studies in fibroblasts including plasmalogen biosynthesis, peroxisomal fatty acid alfa and beta oxidation confirmed the diagnosis of PBD. Immunofluoresence microscopy revealed the absence of peroxisomes in fibroblasts. The patient was assigned to the PEX19 complementation group. Subsequent mutation analysis of the PEX19 gene revealed homozygosity for a c.320delA frameshift mutation. The patient had a stormy course with multiple admissions to the pediatric intensive care unit with pneumonia, liver impairment, sepsis, and epilepsy. At 1 year of age she developed metabolic acidosis with normal anion gap, proteinuria, aminoaciduria, and glucosuria consistent with a renal tubular defect. Abdominal ultrasound showed multiple gallstones. Other causes of gallstones like haemoglobinopathy were excluded. So far, only two siblings had been reported with mutations in the PEX19 gene. Our patient showed a previously unrecognized association of gallstones and a renal tubular defect with a PBD. (C) 2010 Wiley-Liss, In

    Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder

    Get PDF
    Zellweger spectrum disorders (ZSDs) are multisystem genetic disorders caused by a lack of functional peroxisomes, due to mutations in one of the PEX genes, encoding proteins involved in peroxisome biogenesis. The phenotypic spectrum of ZSDs ranges from an early lethal form to much milder presentations. In cultured skin fibroblasts from mildly affected patients, peroxisome biogenesis can be partially impaired which results in a mosaic catalase immunofluorescence pattern. This peroxisomal mosaicism has been described for specific missense mutations in various PEX genes. In cell lines displaying peroxisomal mosaicism, peroxisome biogenesis can be improved when these are cultured at 30°C. This suggests that these missense mutations affect the folding and/or stability of the encoded protein. We have studied if the function of mutant PEX1, PEX6 and PEX12 can be improved by promoting protein folding using the chemical chaperone arginine. Fibroblasts from three PEX1 patients, one PEX6 and one PEX12 patient were cultured in the presence of different concentrations of arginine. To determine the effect on peroxisome biogenesis we studied the following parameters: number of peroxisome-positive cells, levels of PEX1 protein and processed thiolase, and the capacity to β-oxidize very long chain fatty acids and pristanic acid. Peroxisome biogenesis and function in fibroblasts with mild missense mutations in PEX1, 6 and 12 can be improved by arginine. Arginine may be an interesting compound to promote peroxisome function in patients with a mild peroxisome biogenesis disorde

    A novel PEX12 mutation identified as the cause of a peroxisomal biogenesis disorder with mild clinical phenotype, mild biochemical abnormalities in fibroblasts and a mosaic catalase immunofluorescence pattern, even at 40 degrees C

    No full text
    Mutations in 12 different PEX genes can cause a generalized peroxisomal biogenesis disorder with clinical phenotypes ranging from Zellweger syndrome to infantile Refsum disease. To identify the specific PEX gene to be sequenced, complementation analysis is first performed in fibroblasts using catalase immunofluorescence. A patient with a relatively mild phenotype of infantile cholestasis, hypotonia and motor delay had elevated plasma very long-chain fatty acids and bile acid precursors, but fibroblast studies revealed normal or only mildly abnormal peroxisomal parameters and mosaic catalase immunofluorescence. This mosaicism persisted even when the incubation temperature was increased from 37 degrees C to 40 degrees C, a maneuver previously shown to abolish mosaicism by exacerbating peroxisomal dysfunction. As mosaicism precludes complementation analysis, a candidate gene approach was employed. After PEX1 sequencing was unrewarding, PEX12 sequencing revealed homozygosity for a novel c.102A>T (p.R34S) missense mutation affecting a partially conserved residue in the N-terminal region important for localization to peroxisomes. Transfection of patient fibroblasts with wild-type PEX12 cDNA confirmed that a PEX12 defect was the basis for the PBD. Homozygosity for c.102A>T was identified in a second patient of similar ethnic origin also presenting with a mild phenotype. PEX12 is a highly probable candidate gene for direct sequencing in the context of a mild clinical phenotype with mosaicism and minimally abnormal peroxisomal parameters in fibroblast

    Mutations in PEX10 are a cause of autosomal recessive ataxia

    No full text
    Peroxisomal biogenesis disorders typically cause severe multisystem disease and early death. We describe a child and an adult of normal intelligence with progressive ataxia, axonal motor neuropathy, and decreased vibration sense. Both patients had marked cerebellar atrophy. Peroxisomal studies revealed a peroxisomal biogenesis disorder. Two mutations in PEX10 were found in the child, c.992G>A (novel) and c.764_765insA, and in the adult, c.2T>C (novel) and c.790C>T. Transfection with wild-type PEX10 corrected the fibroblast phenotype. Bile acid supplements and dietary restriction of phytanic acid were started. Peroxisomal biogenesis disorders should be considered in the differential diagnosis of autosomal recessive ataxia

    Laboratory Diagnosis of Peroxisomal Disorders in the -Omics Era and the Continued Importance of Biomarkers and Biochemical Studies

    No full text
    The clinical as well as biochemical and genetic spectrum of peroxisomal diseases has markedly increased over the last few years, thanks to the revolutionary advances in the field of genome analysis and several -omics technologies. This has led to the recognition of novel disease phenotypes linked to mutations in previously identified peroxisomal genes as well as several hitherto unidentified peroxisomal disorders. Correct interpretation of the wealth of data especially coming from genome analysis requires functional studies at the level of metabolites (peroxisomal metabolite biomarkers), enzymes, and the metabolic pathway(s) involved. This strategy is not only required to identify the true defect in each individual patient but also to determine the extent of the deficiency as described in detail in this article

    A novel case of ACOX2 deficiency leads to recognition of a third human peroxisomal acyl-CoA oxidase

    No full text
    Peroxisomal acyl-CoA oxidases catalyze the first step of beta-oxidation of a variety of substrates broken down in the peroxisome. These include the CoA-esters of very long-chain fatty acids, branched-chain fatty acids and the C27-bile acid intermediates. In rat, three peroxisomal acyl-CoA oxidases with different substrate specificities are known, whereas in humans it is believed that only two peroxisomal acyl-CoA oxidases are expressed under normal circumstances. Only three patients with ACOX2 deficiency, including two siblings, have been identified so far, showing accumulation of the C27-bile acid intermediates. Here, we performed biochemical studies in material from a novel ACOX2-deficient patient with increased levels of C27-bile acids in plasma, a complete loss of ACOX2 protein expression on immunoblot, but normal pristanic acid oxidation activity in fibroblasts. Since pristanoyl-CoA is presumed to be handled by ACOX2 specifically, these findings prompted us to re-investigate the expression of the human peroxisomal acyl-CoA oxidases. We report for the first time expression of ACOX3 in normal human tissues at the mRNA and protein level. Substrate specificity studies were done for ACOX1, 2 and 3 which revealed that ACOX1 is responsible for the oxidation of straight-chain fatty acids with different chain lengths, ACOX2 is the only human acyl-CoA oxidase involved in bile acid biosynthesis, and both ACOX2 and ACOX3 are involved in the degradation of the branched-chain fatty acids. Our studies provide new insights both into ACOX2 deficiency and into the role of the different acyl-CoA oxidases in peroxisomal metabolis
    corecore